首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   6篇
  国内免费   5篇
安全科学   133篇
废物处理   3篇
环保管理   12篇
综合类   55篇
基础理论   23篇
污染及防治   44篇
评价与监测   11篇
社会与环境   1篇
灾害及防治   9篇
  2024年   1篇
  2023年   12篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   19篇
  2014年   10篇
  2013年   17篇
  2012年   13篇
  2011年   10篇
  2010年   5篇
  2009年   13篇
  2008年   9篇
  2007年   10篇
  2006年   12篇
  2005年   6篇
  2004年   16篇
  2003年   12篇
  2002年   3篇
  2001年   14篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
91.
Deep saline aquifers have large capacity for geological CO2 storage, but are generally not as well characterized as petroleum reservoirs. We here aim at quantifying effects of uncertain hydraulic parameters and uncertain stratigraphy on CO2 injectivity and migration, and provide a first feasibility study of pilot-scale CO2 injection into a multilayered saline aquifer system in southwest Scania, Sweden. Four main scenarios are developed, corresponding to different possible interpretations of available site data. Simulation results show that, on the one hand, stratigraphic uncertainty (presence/absence of a thin mudstone/claystone layer above the target storage formation) leads to large differences in predicted CO2 storage in the target formation at the end of the test (ranging between 11% and 98% of injected CO2 remaining), whereas other parameter uncertainty (in formation and cap rock permeabilities) has small impact. On the other hand, the latter has large impact on predicted injectivity, on which stratigraphic uncertainty has small impact. Salt precipitation at the border of the target storage formation affects CO2 injectivity for all considered scenarios and injection rates. At low injection rates, salt is deposited also within the formation, considerably reducing its availability for CO2 storage.  相似文献   
92.
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10−11 compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10−11 and invasion time error to <5%.  相似文献   
93.
Computational fluid dynamics is used to investigate the preconditioning aspect of overdriving in dust explosion testing. The results show that preconditioning alters both the particle temperature and distribution prior to flame propagation in the 20-L chamber. A parametric study gives the fluid pressure and temperature, and particle temperature and concentration at an assumed flame kernel development time (10 ms) for varying ignitor size and particle diameter. For the 10 kJ ignitor with 50% efficiency, polyethylene particles under 50 μm reach 400 K and may melt prior to flame propagation. Gases from the ignitor detonation displace the dust from the center of the chamber and may increase local particle concentration up to two times the nominal value being tested. These effects have important implications for explosive testing of dusts in the 20-L chamber and comparing to larger 1-m3 testing, where these effects may be negligible.  相似文献   
94.
张军  周德闯  汪箭 《火灾科学》2013,22(3):167-174
高层建筑已经成为城市建筑中最主要的建筑形式,底层设有商业服务网点的高层居民住宅楼由于兼具商业和居住的功能而受到开发商和用户的青睐。由于对底层商业服务网点的使用需求不同进行的改建、扩建带来的较为突出的消防安全问题,给城市的消防安全管理增加了不确定因素。采用数值模拟的方法构建了底层商业服务网点改扩建后的火灾场景,研究了此类场所改扩建后的火灾危险性,对增设自动喷水灭火系统的消防设计方法可行性进行了论证。模拟结果显示,仅在改扩建网点增设自动喷水灭火系统可以达到阻止火灾蔓延并扑灭火灾的安全要求。  相似文献   
95.
概述了沉淀池数学模型的研究现状及进展,根据模型的维数不同,详细介绍了各种模型的原理、发展历程及适用范围,指出了目前研究中存在的一些问题,并对将来的研究方向进行了展望。  相似文献   
96.
Having a risk analysis of harmful releases over mountainous terrains through wind tunnel experiment is a frontier problem in China. In this paper, a straight-flow wind tunnel is applied to simulate the atmospheric boundary layer and research the motion of high-sulfur gas released to atmosphere when accidental releases occur in a gathering station over the mountainous terrain. After an analysis of hourly concentration in the field accident for eight wind directions, experimental results reveal that nearby concentration fields are dominated by wind and far-field concentration distribution is dominated by topography, which leads to complete levels of consequence impact for the personnel risk inside and around the gathering station. Based on CFD techniques, a three-dimensional modelling was established in comparison with the wind tunnel experiment, which suggests that CFD prediction had underestimated the near-field gas concentration and the performance could not precisely match actual risks the gathering station causes to the mountainous terrain, which leads to a modified equation for numerical prediction. Instead of proposing a lower personnel risk evaluation obtained through the use of CFD techniques, the wind tunnel experiment offers a new choice for the consequence impact analysis for the petrochemical industry in China.  相似文献   
97.
A physical and mathematical model of the reduced kinetics is presented describing heterogeneous detonation in suspensions non-uniform in particle concentration. The model is based on the heterogeneous media approaches, semi-empirical laws of ignition and combustion, and data on the dependence of the detonation velocity on particle concentration. Formation of suboxides and incomplete combustion of aluminum are taken into account integrally. The dependence of the heat release of chemical reactions and the fraction of unburnt particles on the initial composition is determined from the solution of the stationary problem of the structure of the detonation wave. In the calculations of unsteady detonation flows, it is supposed to solve an additional equation for the spatial distribution of initial concentrations. The problems of initiation and development of cellular detonation in flat channels in suspensions of micron-sized aluminum particles are studied. Dependences of the cell size on particle concentration in uniform suspensions are determined. The flow patterns of cellular structures, the forms of the leading front, and the propagation velocities in channels with longitudinal or transversal gradients of particle concentration are analyzed.  相似文献   
98.
The protective layer of chemical storage tank has a significant effect in risk mitigation of projectile-related accidents but the research is still in infancy. In order to investigate the performance of protective layer against projectile, dynamic response process of the large-scale vertical storage tank impacted by the end-cap fragment is simulated based on the LS-DYNA. In this paper, some key factors (thickness, layering order and number of layers) affecting its performance are discussed, which can be characterized by the deformation degrees of the target tank. It is found that the anti-penetration performance is improved rapidly with the increase of thickness, and aluminum (Al) protective layer shows a higher sensitivity to thickness change compared to Ultra-High Molecular Weight Polyethylene (UHMWPE) protective layer. Three double-layered protective layers for different sequences are investigated and the Al-UHMWPE protective layer shows best performance. For the Al protective layers arranged in various combinations of equivalent total thickness, better performance is provided by monolithic structures than layered one. This study demonstrated the rational design of the protective layer around chemical storage tanks in material selection and structure configuration.  相似文献   
99.
Due to local liquid accumulation (AL) in the low-lying section of the buried natural gas pipeline, external corrosion will occur at the interface between the pipeline and the soil. External corrosion will produce pit defects, which will reduce the bearing capacity of the pipeline and affect the normal operation of the pipeline. In addition, corrosion group defects can interact with each other. Thus, the service life of the pipeline is seriously affected. In this work, a case of local corrosion failure of the pipeline caused by liquid accumulation on-site is presented. The importance of this work is verified by experiment and field excavation. Besides, based on the Mises-Stress yield criterion, nonlinear analysis was carried out with the finite element method (FEM). The effects of internal pressure, corrosion pit defect size, internal and external wall corrosion, corrosion pit group, and different types of volumetric corrosion pit defects on the failure of L360QS steel pipe were analyzed with consideration of the effects of axial and circumferential zones of corrosion pits. These correlations have not been seen in previous studies. The FE results make up for the disadvantage that the corrosion is simplified to equal depth corrosion in the code, which will underestimate the residual strength of the actual corroded pipeline and lead to unnecessary repair or replacement. The results provide a reference for failure analysis and strength evaluation of buried L360QS steel pipe with corrosion defect.  相似文献   
100.
ABSTRACT

The biogas constituting majorly CH4 and CO2 has been produced by Ca(OH)2 pre-treated wheat straw with pre-digested cow dung. Some of the key thermodynamic parameters like specific heat capacity, density and heating capacity of the biogas produced have also been calculated per day as well as throughout the hydraulic retention time. The governing equations of biogas with appropriate phase and interfacial conditions describing the physics of the biogas have been derived. The control volume approach has been used to predict the total volume (ml) of biogas, CH4 and CO2 throughout the experiment and on the daily basis. The effects of feedstock, temperature and pressure on the production of biogas, CH4 and CO2 in anaerobic digestion have also been studied. The average number of molar fraction and conversion ratio of CH4 and CO2 are correlated with number of carbon atoms available in feedstock. Numerical calculations by using developed model and Modified Gompertz model have shown proficient agreement with the experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号