首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   17篇
  国内免费   129篇
安全科学   11篇
废物处理   8篇
环保管理   44篇
综合类   214篇
基础理论   121篇
污染及防治   181篇
评价与监测   36篇
社会与环境   17篇
灾害及防治   2篇
  2023年   17篇
  2022年   16篇
  2021年   19篇
  2020年   25篇
  2019年   12篇
  2018年   18篇
  2017年   15篇
  2016年   19篇
  2015年   16篇
  2014年   24篇
  2013年   24篇
  2012年   16篇
  2011年   43篇
  2010年   47篇
  2009年   54篇
  2008年   53篇
  2007年   43篇
  2006年   20篇
  2005年   19篇
  2004年   16篇
  2003年   23篇
  2002年   10篇
  2001年   17篇
  2000年   14篇
  1999年   12篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有634条查询结果,搜索用时 46 毫秒
181.
182.
Wang HC  Liang HS  Chang MB 《Chemosphere》2011,82(8):1090-1095
In this study, we examined the experimental catalytic oxidation of gaseous monochlorobenzene (MCBz) with O3 over Fe2O3 in a packed bed reactor to investigate the feasibility of economical low temperature decomposition at a high space velocity (SV). We investigated the effects of several reaction parameters (temperature, O3 concentration, and SV) on the MCBz oxidation. At 150 °C, the conversion of MCBz over Fe2O3 in the absence of O3 was only 3%; it increased to 91% over Fe2O3 in the presence of 1200 ppm of O3 at a high SV of 83 s−1. A long-term operation study revealed that the conversion of MCBz was stable for more than 96 h. In the steady state, the carbon and chlorine balances were 88% and 86%, respectively. Applying a Langmuir-Hinshelwood kinetic model, we estimated an activation energy of 16.7 kJ mol−1 for MCBz oxidation over Fe2O3 in the presence of O3.  相似文献   
183.
Trivedi N  Gupta V  Kumar M  Kumari P  Reddy CR  Jha B 《Chemosphere》2011,83(5):706-712
The organic solvent tolerant bacteria with their physiological abilities to decontaminate the organic pollutants have potentials to secrete extracellular enzymes of commercial importance. Of the 19 marine bacterial isolates examined for their solvent tolerance at 10 vol.% concentration, one had the significant tolerance and showed a relative growth yield of 86% for acetone, 71% for methanol, 52% for benzene, 35% for heptane, 24% for toluene and 19% for ethylacetate. The phylogenetic analysis of this strain using 16S rDNA sequence revealed 99% homology with Bacillus aquimaris. The cellulase enzyme secreted by this strain under normal conditions showed an optimum activity at pH 11 and 45 °C. The enzyme did show functional stability even at higher pH (12) and temperature (75 °C) with residual activity of 85% and 95% respectively. The enzyme activity in the presence of different additives were in the following order: Co+2 > Fe+2 > NaOCl2 > CuSO4 > KCl > NaCl. The enzyme stability in the presence of solvents at 20 vol.% concentration was highest in benzene with 122% followed by methanol (85%), acetone (75%), toluene (73%) and heptane (42%). The pre-incubation of enzyme in ionic liquids such as 1-ethyl-3-methylimidazolium methanesulfonate and 1-ethyl-3-methylimidazolium bromide increased its activity to 150% and 155% respectively. The change in fatty acid profile with different solvents further elucidated the physiological adaptations of the strain to tolerate such extreme conditions.  相似文献   
184.
The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level.  相似文献   
185.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   
186.
The genetic composition and diversity of Plantago lanceolata L. populations were analysed using amplified fragment length polymorphism (AFLP) as well as simple sequence repeat (SSR) markers to test for differences in an old semi-natural grassland after five years of treatment with ambient or elevated ozone (O3) using a free-air fumigation system. Genetic diversity in populations exposed to elevated O3 was slightly higher than in populations sampled from control plots. This effect was significant for AFLP-based measures of diversity and for SSR markers based on observed heterozygosity. Also, a small but significant difference in genetic composition between O3 treatments was detected by analysis of molecular variance and redundancy analysis. The results show that micro-evolutionary processes could take place in response to long-term elevated O3 exposure in highly diverse populations of outbreeding plant species.  相似文献   
187.
Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.  相似文献   
188.
Arsenate tolerance, As accumulation and As-induced phytochelatin accumulation were compared in populations of Silene paradoxa, one from a mine site enriched in As, Cu and Zn, the other from an uncontaminated site. The mine population was significantly more arsenate-tolerant. Arsenate uptake and root-to-shoot transport were slightly but significantly higher in the non-mine plants. The difference in uptake was quantitatively insufficient to explain the difference in tolerance between the populations. As accumulation in the roots was similar in both populations, but the mine plants accumulated much less phytochelatins than the non-mine plants. The mean phytochelatin chain length, however, was higher in the mine population, possibly due to a constitutively lower cellular glutathione level. It is argued that the mine plants must possess an arsenic detoxification mechanism other than arsenate reduction and subsequent phytochelatin-based sequestration. This alternative mechanism might explain at least some part of the superior tolerance in the mine plants.  相似文献   
189.
Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of S?o Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R(2)=0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R(2)=0.28).  相似文献   
190.
The hypothesis was tested that the lichen substances produced by the epiphytic lichen Hypogymnia physodes control the intracellular uptake of divalent transition metals. Incubating lichen thalli with and without their natural content of lichen substances with metal solutions showed that the lichen substances of H. physodes selectively inhibit the uptake of Cu(2+) and Mn(2+), but not of Fe(2+) and Zn(2+). Such behavior is ecologically beneficial, as ambient concentrations of Cu(2+) and Mn(2+) in precipitation and bark are known to limit the abundance of H. physodes, whereas limiting effects of Fe(2+) or Zn(2+) have never been found. This suggests that increasing the Cu(2+) and Mn(2+) tolerance stimulated the evolution of lichen substances in H. physodes. The depsidone physodalic acid is apparently most effective at reducing Cu(2+) and Mn(2+) uptake among the seven lichen substances produced by H. physodes. Probably lichen substances play a general role in the metal homeostasis of lichens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号