首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2778篇
  免费   125篇
  国内免费   552篇
安全科学   245篇
废物处理   73篇
环保管理   371篇
综合类   1398篇
基础理论   490篇
污染及防治   477篇
评价与监测   174篇
社会与环境   101篇
灾害及防治   126篇
  2024年   8篇
  2023年   65篇
  2022年   87篇
  2021年   117篇
  2020年   102篇
  2019年   72篇
  2018年   64篇
  2017年   68篇
  2016年   100篇
  2015年   114篇
  2014年   118篇
  2013年   131篇
  2012年   174篇
  2011年   236篇
  2010年   152篇
  2009年   193篇
  2008年   173篇
  2007年   200篇
  2006年   176篇
  2005年   136篇
  2004年   121篇
  2003年   114篇
  2002年   96篇
  2001年   75篇
  2000年   106篇
  1999年   76篇
  1998年   50篇
  1997年   59篇
  1996年   49篇
  1995年   42篇
  1994年   41篇
  1993年   41篇
  1992年   29篇
  1991年   16篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   8篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有3455条查询结果,搜索用时 296 毫秒
171.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   
172.
The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the model accurately simulated soil solution concentrations for most plots as indicated by goodness-of-fit measures, although some of the intra-annual variation especially in nitrate and aluminium concentrations could not be reproduced. Model evaluations of two emission-deposition scenarios (current legislation and maximum feasible reductions) for the period 1970-2030 show a strong reduction in sulphate concentrations between 1980 and 2000 in the soil due to the high reductions in sulphur emissions. However, current legislation hardly reduces future nitrogen concentrations, whereas maximum feasible reductions reduces them by more than half. Maximum feasible reductions are also more effective in increasing pH and reducing aluminium concentrations, mostly below ‘critical’ values.  相似文献   
173.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.  相似文献   
174.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   
175.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   
176.
The objective of this study was to assess the effects of dredging on the structure and composition of diatom assemblages from a lowland stream and to investigate whether the response of diatom assemblages to the dredging is also influenced by different water quality. Three sampling sites were established in Rodríguez Stream (Argentina); physico-chemical variables and benthic diatom assemblages were sampled weekly in spring 2001. Species composition, cell density, diversity and evenness were estimated. Diatom tolerance to organic pollution and eutrophication were also analyzed. Differences in physico-chemical variables and changes in benthic diatom assemblages were compared between the pre- and post-dredging periods using a t-test. Data were analyzed using Principal Components Analysis (PCA), non-metric multidimensional scaling (MDS) ordination and cluster analysis. The effects of dredging in the stream involve two types of disturbances: (i) in the stream bed, by the removal and destabilization of the substrate and (ii) in the water column, by generating chemical changes and an alteration of the light environment of the stream. Suspended solids, soluble reactive phosphorus and dissolved inorganic nitrogen were significantly higher in post-dredging periods. Physical and chemical modifications in the habitat of benthic diatoms produced changes in the assemblage; diversity and species numbers showed an immediate increase after dredging, decreasing at the end of the study period. Changes in the tolerance of the diatom assemblage to organic pollution and eutrophication were also observed as a consequence of dredging; in the post-dredging period sensitive species were replaced by either tolerant or most tolerant species. These changes were particularly noticeable in site 1 (characterized by its lower amount of nutrients and organic matter previous to dredging), which showed an increase in the amount of nutrients and oxygen demand as a consequence of sediment removal. However, these changes were not so conspicuous in sites 2 and 3, which already presented a marked water quality deterioration before the execution of the dredging works.  相似文献   
177.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   
178.
Public rangelands in North America are typically managed under a multiple use policy that includes livestock grazing and wildlife management. In this article we report on the landscape level extent of grassland loss to shrub encroachment in a portion of the Rocky Mountain Forest Reserve in southwestern Alberta, Canada, and review the associated implications for simultaneously supporting livestock and wildlife populations while maintaining range health on this diminishing vegetation type. Digitized aerial photographs of 12 km of valley bottom from 1958 and 1974 were co-registered to ortho-rectified digital imagery taken in 1998, and an un-supervised classification used to determine areas associated with grassland and shrubland in each year. Field data from 2002 were over-layed using GPS coordinates to refine the classification using a calibration-validation procedure. Over the 40-year study period, open grasslands declined from 1,111 ha in 1958 to 465 ha in 1998, representing a 58% decrease. Using mean production data for grass and shrub dominated areas we then quantified aggregate changes in grazing capacity of both primary (grassland) and secondary (shrubland) habitats for livestock and wildlife. Total declines in grazing capacity from 1958 to 1998 totaled 2,744 Animal Unit Months (AUMs) of forage (−39%), including a 58% decrease in primary (i.e., open grassland) range, which was only partly offset by the availability of 1,357 AUMs within less productive and less accessible shrubland habitats. Our results indicate shrub encroachment has been extensive and significantly reduced forage availability to domestic livestock and wildlife, and will increase the difficulty of conserving remaining grasslands. Although current grazing capacities remain marginally above those specified by regulated grazing policies, it is clear that continued habitat change and decreases in forage availability are likely to threaten the condition of remaining grasslands. Unless shrub encroachment is arrested or grassland restoration initiated, reductions in aggregate ungulate numbers may be necessary.
Edward W. BorkEmail:
  相似文献   
179.
R. Prado  C. Rioboo  C. Herrero  A. Cid   《Chemosphere》2009,76(10):1440-1444
Huge quantities of pesticides are dispersed in the environment, affecting non-target organisms. Since paraquat affects the photosynthetic process, the biochemical composition of affected species should be altered. The effect of paraquat on Chlamydomonas moewusii, a freshwater non-target species, was studied. After 48 h of herbicide exposure, growth rate, dry weight, and chlorophyll a and protein content were affected by paraquat concentrations above 0.05 μM. C/N ratio was also affected due to a decrease in nitrogen content in the dry biomass, while the carbon content remained constant for all paraquat concentrations assayed. Enzymes involved in nitrogen assimilation were affected by paraquat, being nitrate reductase activity more sensitive to paraquat than nitrite reductase. Based on the results obtained in the present study, paraquat exerts adverse effects upon a common freshwater green microalga, thus the application of this herbicide for weed control must be carried out very carefully, so that any disturbance affecting algae will have severe repercussions on higher trophic levels and on the elemental biogeochemical cycles.  相似文献   
180.
环境规制对技术效率和生产力损失的影响分析   总被引:7,自引:1,他引:6  
以中国工业为研究对象,以经济发展程度不同所分的东部、中部和西部地区兰个地区作为研究区域,采用非参数数据包络法(DEA)中的径自效率测量方法(radial efficiency measure)为主要研究方法,分析了在1998-2005年期间环境规制对中国工业的技术效率和生产力损失的影响.研究结果表明,在指定的研究期间,环境规制使得中国工业技术效率提高,但是对于生产力的发展却产生了负面的影响.三个地区之间受环境规制影响的差异较大,其中东部为环境规制所付出的成本最大,即东部为环境污染所付出的环境成本最高,这也是为何从九十年代开始,污染物从东部往中西部转移的原因;从受污染物影响的角度来看,因控制废水而引起的生产力损失大于因控制SO2而引起的生产力损失,即对于中国工业,废水的环境成本大于SO2的环境成本.另外,从研究结果中也可知,在中国现有的生产方式下,实施严格的环境规制有一定难度,所以改变旧的生产方式,实施可持续发展的生产方式是当务之急.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号