首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   7篇
  国内免费   203篇
安全科学   15篇
废物处理   3篇
环保管理   2篇
综合类   180篇
基础理论   110篇
污染及防治   92篇
评价与监测   4篇
  2024年   2篇
  2023年   6篇
  2022年   14篇
  2021年   14篇
  2020年   24篇
  2019年   18篇
  2018年   31篇
  2017年   37篇
  2016年   31篇
  2015年   42篇
  2014年   20篇
  2013年   50篇
  2012年   30篇
  2011年   36篇
  2010年   16篇
  2009年   11篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有406条查询结果,搜索用时 27 毫秒
101.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   
102.
以AgNO3为前驱体,聚偏氟乙烯(PVDF)为聚合物基体,聚乙烯吡咯烷酮(PVP)为分散剂和成孔剂,N,N-二甲基甲酰胺(DMF)为还原剂和溶剂,利用相转化法制备了纳米Ag粒子原位杂化PVDF超滤膜.采用扫描电镜、透射电镜、原子力显微镜及接触角测定仪对杂化膜的结构和性能进行了表征.结果表明:原位形成的纳米Ag粒子均匀地分散在聚合物基体中,纳米Ag粒子的添加改善了PVDF膜的亲水性能.以腐殖酸和牛血清蛋白作为污染物的代表,考察了Ag/PVDF膜的抗有机污染性能.以大肠杆菌、耐甲氧西林金黄色葡萄球菌及活性污泥作为微生物的代表,考察了杂化膜的抗生物污染性能.结果证实了与纯PVDF膜相比,Ag/PVDF膜通量衰减较慢,可有效抑制微生物的生长,表面受活性污泥污染程度小,具有显著的抗有机污染和抗生物污染性能.  相似文献   
103.
董蕾茜  王小 《环境科学学报》2014,34(11):2731-2738
选取氧化铝分散体(Al2O3)、Linde A型沸石(LTA)、Linde L型沸石(LTL)和X型八面沸石(FAU-X)4种纳米颗粒,采用原位植入的方法对超滤膜进行表面改性,以提高聚砜超滤膜的抗生物污染性能.通过扫描电子显微镜、接触角测定、抗生物污染性能测试等方法来表征改性前后膜结构和性能的变化.结果表明,纳米颗粒在膜表面的原位植入具有其可行性,该方法只改变超滤膜的表面形貌,对断面和底面的结构没有影响;纳米颗粒原位植入法改性后,超滤膜的亲水性有显著提高.就抗生物污染性能而言,纳米颗粒的植入提高了膜的抗粘附性能,在纳米颗粒覆盖的区域没有大肠杆菌粘附生长;在这4种膜中,UF-LTA和UF-LTL膜的抗粘附性能优于UF-Al2O3和UF-FAU-X膜.相较而言,LTA型沸石在膜表面分散效果良好,原位植入后显著改善了膜的亲水性并且表现出较好的抗粘附性能,可作为理想的材料用于下一步研究.但LTA型沸石的抗水流剪切的能力较弱,要想提高该种纳米颗粒在膜表面的结合牢固性,应考虑减小颗粒的粒径.  相似文献   
104.
掺入金属离子的TiO2纳米粒子光催化降解吖啶橙   总被引:9,自引:0,他引:9  
利用酸催化溶胶-凝胶法(sol-gel)制备了 Fe3+和 Cr3+不同掺入量的 TiO2半导体纳米粒子研究了这些纳米粒子对吖啶橙光催化氧化降解的影响.结果表明,微量 Fe3+和 Cr3+的掺入可明显提高 TiO2的光催化活性.进一步研究表明,在 Fe3+-TiO2体系中,最佳掺入量为 0.1%,而且中性介质和自然光有利于光催化氧化反应的进行,反应3h后降解率可达97.75%.在Cr3+-TiO2体系中,弱碱性介质和自然光有利于光催化氧化反应,最佳掺入量为0.05%,降解率可达87.54%.  相似文献   
105.
Naturally occurring nanoparticles (NP) enhance the transport of hydrophobic organic contaminants (HOCs) in porous media. In addition, the debate on the environmental impact of engineered nanoparticles (ENP) has become increasingly important. HOC bind strongly to carbonaceous ENP. Thus, carbonaceous ENP may also act as carriers for contaminant transport and might be important when compared to existing transport processes. ENP bound transport is strongly linked to the sorption behavior, and other carbonaceous ENP-specific properties. In our analysis the HOC-ENP sorption mechanism, as well as ENP size and ENP residence time, was of major importance. Our results show that depending on ENP size, sorption kinetics and residence time in the system, the ENP bound transport can be estimated either as (1) negligible, (2) enhancing contaminant transport, or (3) should be assessed by reactive transport modeling. One major challenge to this field is the current lack of data for HOC-ENP desorption kinetics.  相似文献   
106.
李孟  吴思  张斌 《环境工程学报》2012,6(6):1817-1822
以腐殖酸和纳米Fe2O3为对象,着重研究了腐殖酸分子在纳米Fe2O3表面的吸附过程中的疏水效应,借助红外光谱和热重等分析方法研究了腐殖酸吸附前后的疏水性随溶液环境变化的规律。结果表明,当离子强度为0、0.005、0.01和0.05 mol/kg,pH从7变到12时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着pH的升高先减小后增大。当pH从7升高到10时,亲水性降低,疏水性增强;当pH从10升高到12时,亲水性增强,疏水性降低。当离子强度为0.001 mol/kg,pH从7变到12时,复合体的热失重量随着pH的升高而减小,亲水性降低,疏水性增强。当pH为定值,离子强度变化时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着离子强度的增加不断变化,曲线呈现出波动趋势,亲、疏水性在交替变化。红外光谱分析结果说明,对纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的亲疏水性起主要影响的官能团可能是亲水性的羟基—OH、羰基CO和疏水性的CH2烷烃。  相似文献   
107.
Christen V  Fent K 《Chemosphere》2012,87(4):423-434
Engineered silica nanoparticles (SiO2-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO2-NPs and SiO2-NPs doped with silver (SiO2-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fathead minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO2 and SiO2-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO2-NPs and SiO2-1% Ag-NPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO2-1% Ag-NPs and AgNO3 induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO2-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO2-NPs and SiO2-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs.  相似文献   
108.
采用共沉淀法制备了纳米四氧化三铁(Fe3O4),并进行必要表征,制备所得的Fe3O4粒径与商品Fe3O4相当,均为15~20nm。在中性、碱性条件下,制备的材料表面带负电,而在弱酸性条件下,则带正电。制备出的Fe3O4与商品的Fe3O4一样,对对硝基甲苯具有相同的机械催化降解效率,均符合准一级反应动力学。  相似文献   
109.
Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications.  相似文献   
110.
Alumina supported Pd catalyst(Pd/Al2O3) is active for complete oxidation of methane, while often suffers transient deactivation during the cold down process. Herein, heating and cooling cycle tests between 200 and 900 °C and isothermal experiments at 650 °C were conducted to investigate the influence of NOx on transient deactivation of Pd/θ-Al2O3 catalyst during the methane oxidation. It was found that the co-fed of NO alleviated transient d...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号