排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
利用简青霉菌丝球固定生物炭制得一种新型生物吸附剂,吸附处理亚甲基蓝(MB)和甲基橙(MO)两种染料,考察了接触时间、菌丝球和生物炭用量、pH、染料初始浓度等影响因子对处理效果的影响。结果表明,菌丝球固定生物炭不仅保留了两者的吸附能力,而且易于固液分离。含炭菌丝球对亚甲基蓝的吸附效果优于甲基橙。甲基橙和亚甲基蓝的吸附平衡时间分别为48 h和60 h。亚甲基蓝在碱性条件下的吸附去除效果更好,甲基橙的吸附最适pH范围为5~6。Langmuir等温模型比Freundlich等温模型更适合模拟含炭菌丝球对亚甲基蓝和甲基橙的吸附行为。实验结果可以为微生物和生物炭的联合应用提供科学依据。 相似文献
2.
在以皮胶原为碳、氮源时其最适产酶条件为p H7 ,30 ℃,高产酶时间为4 d .经 Ca( O H)2 预处理革屑不能有效促进该菌对革屑的降解,但可使大部分 Cr3 + 沉淀而除去.经该株蛋白酶的粗提及性质实验,确定酶的最适反应条件为40 C、p H7 .0 ~8 .0 , Cr3 + 对酶有轻度的抑制作用,以2 .26 % 的粗酶作用于革屑,水解率达50 % 以上 相似文献
3.
直接大红4BE染料吸附脱色真菌的分离及特性研究 总被引:1,自引:0,他引:1
通过梯度富集培养,筛选到一株偶氮染料直接大红4BE吸附脱色真菌HS-DY08,该菌在基础培养基中,30℃、150r/min条件下,24h内对浓度为30mg/L的直接大红4BE的吸附脱色率达92%。脱色液动态扫描结果显示,随着HS-DY08菌株对染料的吸附脱色降解,直接大红4BE的吸收峰(526nm)明显降低,中间产物(325nm)的吸收峰逐渐升高,且染料吸附过程中菌体生长量增加,表明菌株对染料的吸附脱色过程中伴随着对染料的生物降解和利用。不同的共基质底物对直接大红4BE吸附脱色能力的促进作用依次为:PDB>葡萄糖>蛋白胨>NH4Cl。结合形态特征及显微观察结果,初步鉴定HS-DY08为青霉属(Pemnicillium sp.)。 相似文献
4.
5.
Penicillium chrysogenum was immobilized on silica to develop a simple and cost effective method for solid phase extraction of Cd(II) and determination using flame atomic absorption spectrometry (FAAS). The sorbent was characterized by Fourier transform infrared spectroscopy and packed into a column. The conditions for quantitative sorption and desorption of Cd(II) were optimized. The preconcentration factor was 100 while detection limit was 0.61 µg L?1 with a relative standard deviation of 1.0%. The method was applied for determination of Cd in herbal medicine and tap water. 相似文献
6.
Sakie Miyazaki Kazuhei Takahashi Mari Shiraki Terumi Saito Yoko Tezuka Ken-ichi Kasuya 《Journal of Polymers and the Environment》2000,8(4):175-182
A poly(3-hydroxybutyrate) (PHB) depolymerase was purified from a fungus, Penicillium funiculosum (IFO6345), with phenyl-Toyopearl and its properties were compared with those of other PHB depolymerases. The molecular mass of the purified enzyme was estimated at about 33 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The pH optimum and pI were 6.5 and 6.5, respectively. The purified protein showed affinity to Con A-Sepharose, indicating that it is a glycoprotein. Diisopropylfluorophosphate and dithiothreitol inhibited the depolymerase activity completely. The N-terminal amino acid sequence of the purified enzyme was TALPAFNVNPNSVSVSGLSSGGYMAAQL, which contained a lipase box sequence. This purified enzyme is one of the extracellular PHB depolymerase which belong to serine esterase. The purified enzyme showed relatively strong hydrolytic activity against 3-hydroxybutyrate oligomers compared with its PHB-degrading activity. PHB-binding experiments showed that P. funiculosum depolymerase has the weakest affinity for PHB of all the depolymerases examined. 相似文献
7.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites. 相似文献
8.
Owing to reported phytotoxicity of some sulfonylurea class of herbicides in number of sensitive crops and higher persistence in soil, present study was conducted to isolate and identify pyrazosulfuron-ethyl degrading fungi from soil of rice field. Penicillium chrysogenum and Aspergillus niger, were isolated and identified from rhizospere soil of rice field, as potent pyrazosulfuron-ethyl degrading fungi. Degradation of pyrazosulfuron-ethyl by P. chrysogenum and A. niger, yielded transformation products/metabolites which were identified and characterized by LC/MS/MS. The rate of dissipation of pyrazosulfuron-ethyl was found higher in soil of rice field and soil inoculated with P. chrysogenum. This showed important route of degradation of pyrazosulfuron-ethyl by microbes apart from chemical degradation. 相似文献
9.
Wilkins K Larsen K Simkus M 《Environmental science and pollution research international》2003,10(4):206-208
Since volatile mold metabolites are used for the detection of mold growth in buildings, it was interesting to determine whether different indoor mold species show different affinity for the major components of wood, a common building material. Growth and volatile metabolites were studied when Aspergillus versicolor, Penicillium chrysogenum, and P. palitans were grown on laboratory substrates containing the major wood constituents cellulose, xylan and lignin. Microbial volatile organic compounds (MVOCs) were characterized by thermal desorption/gas chromatography/mass spectroscopy. Growth and volatile metabolites varied considerably and there appeared to be complementary substrate specificities for P. chrysogenum, and P. palitans grown on cellulose and xylan. The failure of A. versicolor to produce characteristic MVOCs when grown on media containing wood constituents suggests that systems using volatile metabolites to detect microbial growth in buildings may be fundamentally unreliable for the detection of this species. 相似文献
10.
几种诱导子对青霉PT95菌株固态发酵产生类胡萝卜素的影响 总被引:3,自引:0,他引:3
分别用粗糙脉孢菌(Neurosporacrassa)、紫红曲霉(Monascuspurpureus)、掷孢酵母(Sporobolomycesroseus)、深红酵母(Rhodotorularubra)、诺卡氏菌(Nocardiasp. )N89和游动放线菌(Actinoplanessp. )A05的细胞壁制成6种诱导子.当在玉米培养基中添加适量诱导子进行诱导培养时,青霉PT95菌株的菌核生物量和菌核中积累的类胡萝卜素含量有了显著的提高(P<0. 01),从而提高了PT95菌株的类胡萝卜素产率.其中, 4种真菌诱导子的效果明显好于另外2种放线菌诱导子,紫红曲霉诱导子的效果最好.当培养基中紫红曲霉诱导子的质量分数为100μg/g时,每百克玉米的类胡萝卜素产率达到14 446μg,比对照提高176%.除紫红曲霉诱导子外,其余5种诱导子都能显著提高总色素中的β-胡萝卜素百分含量(P<0. 01). 表4参9 相似文献