首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1162篇
  免费   97篇
  国内免费   292篇
安全科学   87篇
废物处理   16篇
环保管理   245篇
综合类   570篇
基础理论   155篇
污染及防治   363篇
评价与监测   68篇
社会与环境   36篇
灾害及防治   11篇
  2024年   3篇
  2023年   23篇
  2022年   42篇
  2021年   46篇
  2020年   41篇
  2019年   48篇
  2018年   37篇
  2017年   52篇
  2016年   48篇
  2015年   49篇
  2014年   55篇
  2013年   120篇
  2012年   78篇
  2011年   90篇
  2010年   51篇
  2009年   93篇
  2008年   68篇
  2007年   68篇
  2006年   73篇
  2005年   51篇
  2004年   59篇
  2003年   36篇
  2002年   41篇
  2001年   60篇
  2000年   43篇
  1999年   19篇
  1998年   36篇
  1997年   26篇
  1996年   11篇
  1995年   6篇
  1994年   10篇
  1993年   14篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1972年   2篇
  1967年   1篇
排序方式: 共有1551条查询结果,搜索用时 15 毫秒
71.
微生物电化学技术能同时实现污染物去除和能量回收,但存在污染物去除种类有限及产能效率低的局限,近几年将可再生的太阳能引入微生物电化学技术的微生物-光-电化学耦合技术应运而生。本文简要介绍了微生物-光-电化学耦合技术的发展背景和研究现状,对该技术现有的耦合形式进行分类,并对各种形式的耦合机理进行详细的阐释,最后对其未来的发展进行了展望。  相似文献   
72.
为实现风送管道物料静电监测与控制,预防料仓静电燃爆事故,提高聚烯烃装置料仓安全水平,基于非平衡式双极性离子风消电技术,开发了双极性离子风消电器;基于离子风消电器和静电监测器,探讨了石化粉体料仓用离子风消电控制系统组成、电路、气路布局;对非平衡式双极性离子风消电系统进行现场应用测试。结果表明:基于此管道粉体消静电技术,合理调节正、负侧控制电压,可有效控制管道物料荷质比稳定在±0.3 μC/kg以内,保障聚烯烃装置料仓安全、稳定运行。  相似文献   
73.
One uncertainty associated with large dam removal is the level of downstream sediment deposition and associated short‐term biological effects, particularly on salmonid spawning habitat. Recent studies report downstream sediment deposition following dam removal is influenced by proximity to the source and river transport capacity. The impacts of dam removal sediment releases are difficult to generalize due to the relatively small number of dam removals completed, the variation in release strategies, and the physical nature of systems. Changes to sediment deposition and associated streambed composition in the Elwha River, Washington State, were monitored prior to (2010‐2011) and during (2012‐2014) the simultaneous removal of two large dams (32 and 64 m). Changes in the surface layer substrate composition during dam removal varied by year and channel type. Riffles in floodplain channels downstream of the dams fined and remained sand dominated throughout the study period, and exceeded levels known to be detrimental to incubating salmonids. Mainstem riffles tended to fine to gravel, but appear to be trending toward cobble after the majority of the sediment was released and transported through system. Thus, salmonid spawning habitats in the mainstem appear to have been minimally impacted while those in floodplain channels appear to have been severely impacted during dam removal.  相似文献   
74.
非饱和土壤渗透系数空间不确定性对溶质运移的影响   总被引:1,自引:0,他引:1  
包气带渗透系数的不确定性是影响非饱和带溶质运移的主要因素。应用贝叶斯方法对非饱和土壤渗透系数进行前处理,使用Monte-Carlo方法模拟其空间不确定性,并通过HYDRUS-1D模型对溶质运移进行数值模拟,研究包气带渗透系数的空间不确定性对溶质运移的影响。结果表明,由于包气带渗透性的不确定性使得溶质浓度分布呈现明显的不确定性,包气带内不同点的浓度值相差很大。与忽略包气带土性参数空间不确定性的模拟结果相对比,考虑包气带渗透系数不确定性的模拟结果与实际情况更加接近,更具合理性和科学性。同时,根据模拟结果,对实际工作中进行地下水数值模拟时溶质初始浓度输入值的确定提出相应建议。  相似文献   
75.

The method of residue analysis of kresoxim-methyl and its dissipation rate in cucumber and soil in a greenhouse were studied. Residues of kresoxim-methyl were extracted from cucumber and soil matrices with acetone, purified by liquid-liquid extraction and Florisil cartridges, and then determined by GC with NP-detector. The limit of detection was estimated to be 9× 10?12 g, and the minimum determination concentration of kresoxim-methyl in the samples was 0.005 mg kg?1. The average recoveries ranged from 89.4 to 100.2% with a coefficient variation between 2.4 and 8.9%. Dissipation study showed that the half-lives of kresoxim-methyl in cucumber were approximately 6.5 days at both the recommended and double the recommended dosage. Half-lives for both the treatments were approximately 8 days in soil. The present study revealed that the residues in cucumber were below the MRL (0.05 mg kg?1, fixed by EU) after 7 days for both treatments.  相似文献   
76.
In order to provide residue data for refining the estimated sampling uncertainty, a coordinated research program was initiated for performing field studies on residues in individual items of leafy vegetables, small and large crops. The trials were carried out in 13 countries with 3 small fruits, 5 large crops, 2 medium/large crops and 3 leafy vegetables. The 25 pesticide active ingredients applied represented the dicarboximide (3), organophosphorus (8), synthetic pyrethroids (5), phthalimides (2), organochlorine (1) and other types of pesticides (6). In addition, 11 supervised field trials were performed in grapes and lettuce by the pesticide manufacturers, and their results were provided for evaluation. The studies represented actual agriculture practice around the world, and provide reliable data for estimation of sampling uncertainty. Based on the 12346 residue data, the best estimate for the relative sampling uncertainty for composite samples, assuming sample size of 10 for small crops and leafy vegetables and 5 for large crops, with 95% confidence limits in brackets are: small commodities: 0.25 (0.20–0.29); Brassica leafy vegetables: 0.20 (0.16–0.24); large commodities: 0.33 (0.29–0.38).  相似文献   
77.
The objective of the study was to evaluate the potential risk of DNA damage due to exposure to a mixture of the most widely used pesticides, namely endosulfan, chlorpyriphos and thiram at an environmentally relevant concentration (5 μM each) and the DNA protective capacity of sulforaphane (SFN) (10–30 μg/mL). DNA damage in human lymphocytes was ascertained with Single Cell Gel Electrophoresis (SCGE), also called Comet Assay. For positive control, H2O2 at 100 mM was used. The pesticide mixture produced DNA damage at the concentration used in the lymphocytes. SFN was able to offer a statistically significant (P < 0.01), concentration-dependant protection to DNA damage between 10–20 μg/mL in both the pre-incubation and co-incubation strategies. The results indicate that exposure to low levels of these pesticide mixtures can induce DNA damage, and the presence of SFN in diet may reduce the incidence of genetic damage, especially in farm workers. However, it is not clear whether SFN is involved in quenching of the free radicals generated by the pesticide mixture or it is involved in DNA repair mechanism.  相似文献   
78.
This study was undertaken to determine the effect of environmentally realistic concentrations of two commonly used pesticides viz., malathion and cypermethrin, using a fully 3 × 3 factorial experiments on the survivability and time of metamorphosis in a common rice paddy field frog (cricket frog) Fejervarya limnocharis under laboratory conditions. The results suggest that cypermethrin is more toxic than malathion and combinations of higher concentrations of cypermethrin (50 μg/L) with malathion (250 and 500 μg/L) are more deleterious to the survivability of tadpoles. With increasing cypermethrin concentration, the survivability of tadpole decreased (r = ?0.986, P = 0.108). But cypermethrin alone induced early metamorphosis among the surviving tadpoles. However, there was a delay in the time required for metamorphosis induced by malathion and its combination with cypermethrin. The delay in metamorphosis may indicate the altered physiological fitness of the individual. The emergent froglets will be subjected to environmental stressors like high temperature and less humidity of post-monsoon tropical climate that could enhance negative influence triggered by pesticides.  相似文献   
79.
Tin or stannous (Sn2+) compounds are used as catalysts, stabilizers in plastic industries, wood preservatives, agricultural biocides and nuclear medicine. In order to verify the Sn2+ up-take and toxicity in yeast cells we utilized a multi-elemental analysis known as particle-induced X-ray emission (PIXE) along with cell survival assays and quantitative real-time PCR. The detection of Sn2+ by PIXE was possible only in yeast cells in stationary phase of growth (STAT cells) that survive at 25 mM Sn2+ concentration. Yeast cells in exponential phase of growth (LOG cells) tolerate only micro-molar Sn2+ concentrations that result in intracellular concentration below of the method detection limit. Our PIXE analysis showed that STAT XV185-14c yeast cells demonstrate a significant loss of intracellular elements such as Mg, Zn, S, Fe and an increase in P levels after 1 h exposure to SnCl2. The survival assay showed enhanced tolerance of LOG yeast cells lacking the low-affinity iron and zinc transporters to stannous treatment, suggesting the possible involvement in Sn2+ uptake. Moreover, our qRT-PCR data showed that Sn2+ treatment could generate reactive oxygen species as it induces activation of many stress-response genes, including SOD1, YAP1, and APN1.  相似文献   
80.
We report results of a multigenerational experiment with Chironomus riparius. Two strains with a high and a low level of genetic variability were exposed to a low, environmentally relevant TBT concentration of 80 μg Sn kg−1 sediment dw nominally (time weighted mean, based on measured concentrations: 4.5 μg Sn kg−1 sediment dw), and various life history traits as well as genetic diversity were monitored for eleven consecutive generations. While TBT effects are hardly visible in the outbred and genetically diverse strain, the inbred and genetically impoverished strain shows a clearly reduced population growth rate compared to the control. Moreover, the impoverished strain shows an increase in fitness over time. Analyses of variation at five microsatellite loci revealed that the level of genetic variation is strongly reduced in the inbred compared to the outbred strain. Moreover, genetic diversity increases over time in the inbred strain. This finding explains the observed increase in fitness in both inbred lineages (control and TBT exposed). The results document that inbreeding and the level of genetic diversity might be of crucial importance in populations under pollution stress. Furthermore, ecotoxicological bioassays have to consider genetic diversity if results between laboratories should be comparable. Our data provides evidence that genetic diversity strongly contributes to the survival of a population exposed to chemical pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号