首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   29篇
  国内免费   183篇
安全科学   28篇
废物处理   23篇
环保管理   19篇
综合类   225篇
基础理论   39篇
污染及防治   117篇
评价与监测   4篇
社会与环境   1篇
  2023年   2篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   6篇
  2016年   14篇
  2015年   26篇
  2014年   26篇
  2013年   57篇
  2012年   42篇
  2011年   36篇
  2010年   25篇
  2009年   26篇
  2008年   17篇
  2007年   27篇
  2006年   23篇
  2005年   18篇
  2004年   12篇
  2003年   14篇
  2002年   5篇
  2001年   3篇
  2000年   10篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有456条查询结果,搜索用时 62 毫秒
51.
文章主要研究模拟高放废液加入沸石预处理经碱矿渣水泥固化后Cs+的浸出性能。实验结果表明,处理含Cs+高放废液固化体中加入沸石,能使Cs+浸出率降低";两步法"掺入沸石固化体抗Cs+浸出性能更有所提高;pH值升高Cs+的吸附比增大。  相似文献   
52.
水热条件对粉煤灰沸石离子交换性能的影响   总被引:1,自引:0,他引:1  
沸石的离子交换性能是决定其应用价值的一个重要指标。为衡量粉煤灰沸石的应用性能,本研究主要考察了反应温度、反应时间以及添加剂等水热反应条件对合成粉煤灰沸石产品离子交换性能(CEC,Cation Exchange Capacity)的影响。结果表明,产品的CEC值随着反应温度和反应时间增加而增大,至120℃、6h达到最大。添加剂十六烷基三甲基溴化铵和95%乙醇有效促进了NaP1沸石的结晶过程,均可使产品CEC值提高10%以上。合成NaP1型粉煤灰沸石的最佳水热反应条件为:反应温度120℃,反应时间6h,液固比(mL/g)为8,氢氧化钠浓度为2mol/L,95%乙醇作为添加剂。所得粉煤灰沸石产品CEC值达到最大值198.31cmol/kg。  相似文献   
53.
天然沸石吸附低浓度氨氮废水的研究   总被引:3,自引:0,他引:3  
采用浙江某地天然沸石吸附废水中低浓度氨氮,研究了pH、天然沸石投加量对吸附的影响,分析了吸附等温线和吸附动力学,并进行了动态吸附和脱附研究。结果表明,pH对天然沸石吸附有较大影响,吸附的最佳pH为8.0;随着天然沸石投加量的增加,氨氮的去除率逐渐增大,但吸附量随之减小。Freundlich方程比Langmuir方程更好地描述氨氮在天然沸石上的吸附行为,且此吸附是优惠吸附。假二级方程很好地拟合吸附动力学实验数据,吸附速率常数k2随着天然沸石投加量的增大而增大。装填105g天然沸石吸附柱处理含氨氮20mg/L废水的水量为15L,出水氨氮浓度小于5mg/L。用含氯化钠和氢氧化钠的溶液作为脱附剂,脱附率为95.5%。  相似文献   
54.
Natural zeolite was modified by loading cetylpyridinium bromide (CPB) to create more e cient sites for humic acid (HA) adsorption. The natural and CPB modified zeolites were characterized with X-ray di raction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The e ects of various experimental parameters such as contact time, initial HA concentration, solution pH and coexistent Ca2+, upon HA adsorption onto CPB modified zeolites were evaluated. The results showed that natural zeolite had negligible a nity for HA in aqueous solutions, but CPB modified zeolites exhibited high adsorption e ciency for HA. A higher CPB loading on natural zeolites exhibited a larger HA adsorption capacity. Acidic pH and coexistent Ca2+ were proved to be favorable for HA adsorption onto CPB modified zeolite. The kinetic process was well described by pseudo second-order model. The experimental isotherm data fitted well to Langmuir and Sips models. The maximum monolayer adsorption capacity of CPB modified zeolite with surfactant bilayer coverage was found to be 92.0 mg/g.  相似文献   
55.
焦化废水处理中预处理蒸氨工艺不稳定容易引起生物处理出水NH+4-N的波动,为了在有机物去除的同时提高生物系统对NH+4-N的去除效果和稳定性,采用对NH+4-N有良好吸附性能的天然斜发沸石为生物填料构建沸石床多级生物膜系统,考察了进水负荷对系统运行稳定性的影响、抗冲击负荷能力以及系统的功能分区和污染物迁移转化规律.结果表明,当系统进水NH+4-N负荷≤0.21 kg/(m3·d)、COD负荷≤1.35 kg/(m3·d)时,出水NH+4-N和COD的平均浓度分别为(2.2±1.2)mg/L和(228±60)mg/L,平均去除率分别达(99.1±0.5)%和(86.0±2.6)%.在低、高两次NH+4-N冲击负荷[0.03 kg/(m3·d)和0.06 kg/(m3·d)]条件下,系统对NH+4-N的平均去除率仍然分别高达99.0%和92.9%,高于对比系统的96.8%和89.3%,表现出良好的抗NH+4-N冲击负荷性能与处理稳定性.系统好氧单元反应器沿程出现脱碳/硝化功能区(C/N区)和硝化功能区(N区),其中N区的NH+4-N 降解速率为C/N区的2~8倍.系统进水中相对分子质量<1×103、 1×103~1×104、>1×104的TOC浓度分别为227.6、104.8和35.0 mg/L,处理出水中的TOC浓度分别为31.2、 22.9和31.5 mg/L,其中相对分子质量<1×103和1×103~1×104这2个范围的有机物降解良好,出水残余物质主要为相对分子质量>1×103的有机物.  相似文献   
56.
With the increase of urbanization, municipal solid waste has also increased. Therefore, the need for solid waste management is also increasing compared with earlier decades. Composting is a good option for the recycling of solid waste; however, it produces leachate, which requires proper treatment systems to prevent environmental degradation. Due to high chemical oxygen demand (COD) concentrations in compost leachate, anaerobic treatment is the best option for handling the effluent, and an anaerobic baffled reactor (ABR) is one such anaerobic reactor that can be used for its treatment. Because of high ammonia and heavy metal concentrations, as well as the possibility of sludge washout in ABRs, it is important to use proper media, such as zeolite, which can reduce inhibition effects and sludge washout from the reactor. Anaerobic treatment, especially during the methanogenesis phase, is sensitive, and pH and alkalinity are parameters that influence the treatment. Therefore, adjusting these parameters within a normal range is very important to the proper functioning of anaerobic systems. In this study, a pilot‐scale ABR was used, and the last 4 of the 8 ABR compartments were filled with zeolite. The bioreactor was operated at hydraulic retention times (HRT) of 3, 4, and 5 days, with zeolite filling ratios of 10%, 20%, and 30%, and influent COD concentrations of 10,000, 20,000, and 30,000 milligrams per liter (mg/L). In this study, pH value was 6.43 ± 0.1, 6.96 ± 0.3, and 6.96 ± 0.25 at filling ratios of 10%, 20%, and 30%, respectively. According to the results, in all filling ratios, no significant changes were observed in the pH value when the organic loading rate increased and its amount was within a constant range. Influent alkalinity was equal to 2015 ± 510, 2884 ± 505, and 4154 ± 233 milligrams of calcium carbonate per liter (mg CaCO3/L) at influent COD concentrations of 10,000, 20,000, and 30,000 mg/L, respectively, and in effluent, they were 2536 ± 336, 3379 ± 639, and 4377 ± 325 mg CaCO3/L, respectively. The amount of alkalinity in the effluent increased compared with the alkalinity in the influent. The results show that the amount of alkalinity in the influent and effluent was similar, and the alkalinity enhancement was lower when the filling ratio was increased from 10% to 20%, and 20% to 30%. Comparisons of the results from zeolite with and without biofilm showed that, in cases of zeolite with biofilm, the amounts of silica and oxygen decreased and the amount of carbon increased, and it showed the formation of biofilm on the surface of zeolite. In addition, the absence of sodium in the zeolite with the biofilm indicated that sodium was exchanged with ammonium ions. According to the results, zeolite can be used in anaerobic reactors as a medium, and it also reduces fluctuations in pH and alkalinity at different organic loading rates, providing a normal range for anaerobic treatment.  相似文献   
57.
A novel technology of two-step fast microwave-assisted pyrolysis(f MAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent(Si C) and HZSM-5catalyst. Effects of f MAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The f MAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step f MAP process, two-step f MAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.  相似文献   
58.
宋卫军  谢妤 《环境工程》2016,34(10):49-55
以稻壳为原料采用煅烧-水热合成法制备了合成沸石,运用XRD和SEM表征了合成沸石的特性,通过静态实验,研究了合成沸石对磷酸盐的吸附和脱附机理。结果表明:12 h后产物发现了Na P沸石的特征峰和亚晶结构,延长水热合成晶化的时间有利于沸石晶核的形成。沸石对磷酸盐的吸附机理符合伪二级模型,实测值与伪二级吸附动力学模型的拟合值相差在1.1%以内。颗粒内扩散速率是由膜扩散和内扩散共同控制,颗粒内扩散速率常数kp随初始浓度的增加而减小。升温有利于磷酸盐的脱附,MNa OH/P>8.0时(MNa OH/P为Na OH物质的量与吸附的磷酸盐物质的量之比),磷酸盐的脱附率可达82.9%。伪二级脱附动力学模型的拟合结果优于伪一级,拟合值与实测值相差在1.7%以内。  相似文献   
59.
改性Y沸石催化降解聚苯乙烯的研究   总被引:1,自引:0,他引:1  
陈平  孙永康 《化工环保》2004,24(3):172-175
用热重分析方法研究了HY沸石与改性Y沸石(UHY)作为催化降解聚苯乙烯的催化剂对聚苯乙烯催化降解的作用及影响,对聚苯乙烯的催化降解与热降解反应产物进行了比较。结果表明,催化剂的存在能显著地降低聚苯乙烯的降解温度,催化剂的酸量和孔结构对聚苯乙烯的降解温度、活化能、积炭的生成量及裂解产物有很大的影响。  相似文献   
60.
聚烯烃类废塑料热分解技术中催化剂的选择和机理初探   总被引:7,自引:0,他引:7  
研究使用不同催化剂情况下聚烯烃类废塑料热分解回收燃油的技术,并对废塑料的热分解机理进行了探讨.结果表明,自制的含大孔径分子筛的NLG系列催化剂具有较好的催化性能,在裂解温度430℃,催化温度为360℃情况下,热分解后油产率为87.5%,油品中汽油馏分达41.3%,辛烷值为88.3,每t生产成本仅12000元左右,循环使用205余次后,仍保持良好的催化性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号