首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   39篇
  国内免费   244篇
安全科学   8篇
废物处理   16篇
环保管理   47篇
综合类   312篇
基础理论   187篇
污染及防治   108篇
评价与监测   40篇
社会与环境   29篇
灾害及防治   13篇
  2024年   3篇
  2023年   7篇
  2022年   16篇
  2021年   12篇
  2020年   13篇
  2019年   17篇
  2018年   22篇
  2017年   26篇
  2016年   19篇
  2015年   28篇
  2014年   28篇
  2013年   59篇
  2012年   34篇
  2011年   48篇
  2010年   33篇
  2009年   36篇
  2008年   44篇
  2007年   56篇
  2006年   37篇
  2005年   32篇
  2004年   21篇
  2003年   27篇
  2002年   20篇
  2001年   19篇
  2000年   24篇
  1999年   8篇
  1998年   15篇
  1997年   11篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1972年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
641.
This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg?1, the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day?1 and the total amount of 2,4-D mineralized at 130 days (M130) ranged from 24 to 39%. Both k and M130 were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M130 were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching.  相似文献   
642.
Goal, Scope and Background Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Materials and Methods Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Results and Discussion Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. Conclusions We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. Recommendations and Outlook The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary. - Abbreviations. EXCH, exchangeable fraction of metals; DAEXCH, dilute acid-exchangeable fraction of metals; FeMnOX, iron and manganese-oxide-bound fraction; OM, organically-bound fraction; RESD, residual fraction. COMPOST, SRNF, RANF, and CONTROL stand for compost (from swine wastes), slow-release nitrogen fertilizer (coated urea), readily available nitrogen fertilizer (including NH4-N, P, and K fertilizers), and no fertilizer application, respectively.  相似文献   
643.
Background Aims, and Scope. Lead (Pb) is a naturally occurring element that poses environmental hazards when present at elevated concentration. It is being released into the environment because of industrial uses and from the combustion of fossil fuels. Hence, Pb is ubiquitous throughout global ecosystems. The existence of potentially harmful concentrations of Pb in the environment must be given full attention. Emissions from vehicles are major source of environmental contamination by Pb. Thus, it becomes imperative that concentrations of Pb and other hazardous materials in the environment not only in the Philippines, but elsewhere in the world be adequately examined in order that development of regulations and standards to minimize risk associated with these materials in urban areas is continued. The objectives of this study were: (1) to determine the levels of Pb in soil from selected urbanized cities in central region of the Philippines; (2) to identify areas with soil Pb concentration values that exceed estimated natural concentrations and allowable limits; and (3) to determine the possible sources that contribute to elevated soil Pb concentration (if any) in the study area. Methods This study was limited to the determination of Pb levels in soils of selected urbanized cities located in central region in the Philippines, namely: Site 1 – Tarlac City in Tarlac; Site 2 – Cabanatuan City in Nueva Ecija; Site 3 – Malolos City in Bulacan; Site 4 – San Fernando City in Pampanga; Site 5 – Balanga City in Bataan; and Site 6 – Olongapo City in Zambales. Soil samples were collected from areas along major thoroughfares regularly traversed by tricycles, passenger jeepneys, cars, vans, trucks, buses, and other motor vehicles. Soil samples were collected from five sampling sites in each of the study areas. Samples from the selected sampling sites were obtained approximately 2 to 3 meters from the road. Analysis of the soil samples for Pb content was conducted using an atomic absorption spectrophotometer. This study was conducted from 2003 to 2004. Since this study assumed that vehicular emission is the major source of Pb contamination in urban soil, other information which the researchers deemed to have bearing on the study were obtained such as relative quantity of each gasoline type disposed of in each city within a given period and volume of traffic in each sampling site. A survey questionnaire for gasoline station managers was prepared to determine the relative quantity of each fuel type (diesel, regular gasoline, premium gasoline, and unleaded gasoline) disposed of or sold within a given period in each study area. Results and Discussion Analysis of soil samples for Pb content showed the presence of Pb in all the soil samples collected from the 30 sampling sites in the six cities at varying concentrations ranging from 1.5 to 251 mg kg–1. Elevated levels of Pb in soil (i.e. greater than 25 mg kg–1 Pb) were detected in five out of the six cities investigated. Site 4 recorded the highest Pb concentration (73.9 ± 94.4 mg kg–1), followed by Site 6 (56.3 ± 17.1 mg kg–1), Site 3 (52.0 ± 33.1 mg kg–1), Site 5 (39.3 ± 19.0 mg kg–1), and Site 2 (38.4 ± 33.2 mg kg–1). Soil Pb concentration in Site 1 (16.8 ± 12.2 mg kg–1) was found to be within the estimated natural concentration range of 5 to 25 mg kg–1. Site 1 registered the least Pb concentration. Nonetheless, the average Pb concentration in the soil samples from the six cities studied were all found to be below the maximum tolerable limit according to World Health Organization (WHO) standards. The high Pb concentration in Site 4 may be attributed mainly to vehicular emission. Although Site 4 only ranked 3rd in total volume of vehicles, it has the greatest number of Type B and Type C vehicles combined. Included in these categories are diesel trucks, buses, and jeepneys which are considered the largest contributors of TSP (total suspended particles) and PM10 (particulate matter less than 10 microns) emissions. Conclusion Only one (San Juan in Site 4) of the thirty sampling sites recorded a Pb concentration beyond the WHO permissible limit of 100 mg kg–1. San Juan in Site 4 had a Pb concentration of >250 mg kg–1. On the average, elevated Pb concentration was evident in the soil samples from San Fernando, Olongapo, Malolos, Balanga, and Cabanatuan. The average soil Pb concentrations in these cities exceeded the maximum estimated natural soil Pb concentration of 25 mg kg–1. Average soil Pb concentration in Site 1 (16.8 mg kg–1) was well within the estimated natural concentration range of 5 to 25 mg kg–1. Data gathered from the study areas showed that elevated levels of Pb in soil were due primarily to vehicular emissions and partly to igneous activity. Recommendation and Outlook The findings of this study presented a preliminary survey on the extent of Pb contamination of soils in urban cities in central region of Philippines Island. With this kind of information on hand, government should develop a comprehensive environmental management strategy to address vehicular air pollution in urban areas, which shows as one of the most pressing environmental problems in the country. Basic to this is the continuous monitoring of Pb levels and other pollutants in air, soil, and water. Further studies should be conducted to monitor soil Pb levels in the six cities studied particularly in areas with elevated Pb concentration. The potential for harm from Pb exposure cannot be understated. Of particular concern are children who are more predisposed to Pb toxicity than adults. Phytoremediation of Pb-contaminated sites is strongly recommended to reduce Pb concentration in soil. Several studies have confirmed that plants are capable of absorbing extra Pb from soil and that some plants, grass species in particular, and can naturally absorb far more Pb than others.  相似文献   
644.
Crude-oil-inundated soils were collected from the Agbada oil field in the Niger Delta region of Nigeria 2 months after the recorded incidence of oil spillage. The soils were taken on the second day of reconnaissance from three replicate quadrats, at surface (0-15 cm) and subsurface (15-30 cm) depths, using the grid sampling technique. The total extractable hydrocarbon content (THC) of the polluted soils ranged from 1.24 × 102 to 3.86 × 104 mg/kg at surface and subsurface depths (no overlap in standard errors at a 95% confidence level). Greenhouse trials for possible reclamation were later carried out using 10-100 g of (NH4)2SO4, KH2PO4 and KCl (NPK) fertilizer as nutrient supplements. Nitrogen as NO3-N and potassium were optimally enhanced at 2% (w/w) and 3% (w/w) of the NPK supplementation, respectively. Phosphorus, which was inherently more enhanced in the soils than the other nutrients, maintained the same level of impact after treatment with 20 g of NPK fertilizer. Total organic carbon (%TOC), total organic matter (%TOM), pH, and percentage moisture content all provided evidence of enhanced mineralization in the fertilizer-treated soils. If reclamation of the crude-oil-inundated soils is construed as the return to normal levels of metabolic activities of the soils, then the application of the inorganic fertilizers at such prescribed levels would duly accelerate the remediation process. However, this would be limited to levels of pollution empirically defined by such THC values obtained in this study.  相似文献   
645.
微塑料作为一种全球性新兴污染物受到学界与社会的广泛关注.由于土壤和沉积物中的微塑料难以分离提取,目前关于微塑料的研究主要集中于水体中,而关于土壤与沉积物中微塑料的丰度、分布与环境行为尚不清楚,迫切需要一种经济、快速、可靠的前处理手段将微塑料从土壤或沉积物中分离出来进而开展检测与监测工作.油提取法不同于传统密度浮选法,其利用塑料的亲油性,使用植物油代替密度液分离土壤与沉积物中的微塑料.通过油提取法在砂土(二长花岗岩风化层残坡积物)、壤土(菜地黄棕壤)、黏土(稻田水稻土)、泥质湖泊沉积物中获得的总加标回收率分别为88.3%±6.29%、88.3%±3.82%、90.0%±2.50%、90.8%±1.44%.其中,对于密度浮选法较难提取的聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET),其回收率分别为93.3%±11.6%(壤土)、96.7%±5.77%(壤土).植物油的加入会对后续微塑料的光谱表征识别产生影响,但可通过无水乙醇冲洗去除,与拉曼光谱仍具有良好的兼容性.利用该方法开展的实地研究获得黄冈市残坡积物(砂土)、武汉市菜地(壤土)、武汉市水稻田(黏土)、武汉市东湖泥质湖泊沉积物中的微塑料丰度分别为1 679、1 612、1 766、7 629个/kg.研究显示,油提取是当下密度浮选技术的可替代方案.   相似文献   
646.
为摸清土壤氟异常对生态环境的影响,利用贵州省多目标区域地球化学调查(1:250 000)项目成果,对贵阳中心区土壤氟的地球化学特征进行了深入研究,并采用全氟指数法对土壤环境质量及其生态环境效应进行初步评价.结果表明:①贵阳中心区土壤氟含量较高,表层、深层土壤氟含量平均值分别为1 143、1 438 mg/kg,且空间分布变化较大;氟含量随土层深度的增加而升高. ②不同类型土壤中氟含量变化较大,其中紫色土中含量(1 306 mg/kg)最高,水稻土次之,石灰土、粗骨土、黄壤等差别较小,其含量范围在1 099~1 167 mg/kg之间. ③土壤氟含量与其母岩呈显著正相关性,且土壤中氟含量较母岩更高,表明风化成土过程中存在一定富集,土壤氟与成土母岩之间具有一定继承性. ④土壤氟环境质量评价结果表明,研究区土壤存在局部氟污染(异常),污染区、警戒区、安全区和清洁区所占比例分别为13.6%、62.2%、19.2%和5.0%. ⑤生态环境效应初步调查结果显示,局部土壤受氟污染区的油菜和稻谷样品中氟含量范围分别为1.86~2.68和10.40~13.50 mg/kg,同时地下水也受到一定程度的氟污染.因此,贵阳中心区土壤氟含量较高,局部土壤已受到氟污染,可能会对农产品质量、饮水安全及人体健康产生一定影响,建议政府部门及科研工作者予以高度重视.   相似文献   
647.
农田土壤Cd污染是我国最为突出的环境问题之一,开展新型钝化修复Cd污染土壤材料的研究和技术开发对保障农产品安全及保护人体健康具有重要意义.以北京某蔬菜生产基地设施大棚Cd污染土壤为试验对象,温室条件下采用盆栽试验,研究牛骨炭与伊/蒙黏土复合组配的改良剂对Cd污染土壤的钝化效果,探讨不同配比的组配改良剂对土壤Cd有效态含量以及小白菜Cd吸收量的影响.结果表明:在污染土壤中添加1%、2%和5%的组配改良剂,可明显降低土壤有效态Cd含量及小白菜对Cd的吸收,土壤有效态Cd含量降幅最大值达42.3%,小白菜地上部分Cd含量降幅最大值达22.7%,组配改良剂中骨炭成分比例越高,钝化效果越好,尤其以添加5%组配改良剂(添加组配改良剂中牛骨炭含量为50%)对Cd的稳定化效果最佳,且不同组配改良剂处理均不会对小白菜生长产生不良影响,表明牛骨炭与伊/蒙黏土组配的改良剂在修复Cd污染土壤上具有较好的应用潜力.研究显示,牛骨炭与伊/蒙黏土组配的改良剂符合绿色修复技术的发展要求,可作为钝化修复农田重金属污染土壤的环保新材料.   相似文献   
648.
Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc(Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the500 m × 500 m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium(Cd) and Zn in soils. The population density,however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils.  相似文献   
649.
Hazardous waste sites may pose a threat to human health and the environment when toxic substances are released. However, the contaminants present at a waste site may have originated on-site (i.e., resulting from releases attributable to site activities) or off-site (i.e., resulting from sources not on-site). Off-site substances may result either from natural sources (e.g., erosion of naturally occurring mineral deposits) or anthropogenic sources (e.g., widespread contamination from automobile exhaust in urban areas). To determine the appropriate action to take at a hazardous waste site, the U.S. Environmental Protection Agency (EPA) must distinguish between substances directly attributable to the hazardous waste site (i.e., site contaminants) and those attributable to natural background concentrations. The most important factor to consider when determining background concentrations is to ensure that the physical, chemical, and biological aspects of the media to be sampled at both the contaminated site and the background site are as similar as possible. Inorganics, in particular metals, are addressed. Radionuclides are not specifically addressed; however, metals with radioactive isotopes that may be encountered at hazardous waste sites are included. There are references and data included in this paper that provide average concentrations and reference values for selected soils and sediments in the United States. Suggested sampling and monitoring design approaches that could be used by scientists and engineers faced with how to determine background concentrations are identified. The issues discussed include the selection of background sampling locations, considerations in the selection of sampling procedures, and statistical analyses for determining whether contaminant levels are significantly different on a potential waste site compared with a background site.  相似文献   
650.
Miretzky P  Bisinoti MC  Jardim WF 《Chemosphere》2005,60(11):1583-1589
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号