首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
  国内免费   10篇
安全科学   9篇
废物处理   1篇
环保管理   5篇
综合类   14篇
基础理论   10篇
污染及防治   29篇
评价与监测   1篇
社会与环境   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   11篇
  2010年   8篇
  2009年   8篇
  2008年   7篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
11.
We examined root hydraulic conductivity (Lp) responses of one-year-old seedlings of four conifers to the combined effects of elevated CO2 and inorganic nitrogen (N) sources. We found marked interspecific differences in Lp responses to high CO2 ranging from a 37% increase in P. abies to a 27% decrease in P. menziesii, but these effects depended on N source. The results indicate that CO2 effects on root water transport may be coupled to leaf area responses under nitrate (NO3), but not ammonium (NH4+) dominated soils. To our knowledge, this is the first study that highlights the role of inorganic N source and species identity as critical factors that determine plant hydraulic responses to rising atmospheric CO2 levels. The results have important implications for understanding root biology in a changing climate and for models designed to predict feedbacks between rising atmospheric CO2, N deposition, and ecohydrology.  相似文献   
12.
Schreck E  Foucault Y  Geret F  Pradere P  Dumat C 《Chemosphere》2011,85(10):1555-1562
Ultrafine particulate matters enriched with metals are emitted into the atmosphere by industrial activities and can impact terrestrial and aquatic ecosystems. Thus, this study investigated the environmental effects of process particles from a lead-recycling facility after atmospheric deposition on soils and potential run-off to surface waters. The toxicity of lead-enriched PM for ecosystems was investigated on lettuce and bacteria by (i) germination tests, growth assays, lead transfer to plant tissues determination and (ii) Microtox analysis.The influence of ageing and soil properties on metal transfer and ecotoxicity was studied using three different soils and comparing various aged, spiked or historically long-term polluted soils. Finally, lead availability was assessed by 0.01 M CaCl2 soil extraction.The results showed that process PM have a toxic effect on lettuce seedling growth and on Vibrio fischeri metabolism. Soil-PM interactions significantly influence PM ecotoxicity and bioavailability; the effect is complex and depends on the duration of ageing. Solubilisation or stabilisation processes with metal speciation changes could be involved. Finally, Microtox and phytotoxicity tests are sensitive and complementary tools for studying process PM ecotoxicity.  相似文献   
13.
Vamerali T  Bandiera M  Mosca G 《Chemosphere》2011,83(9):1241-1248
Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15 m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3 m depth), the former yielding higher contamination (∼30%) in top soil.Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33 mg m−2 of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation.It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover.  相似文献   
14.
Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha−1 yr−1. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen × ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.  相似文献   
15.
Organic acids present in the rhizosphere of growing plants are widely recognized to be responsible for dissolving the solid phase metals in the soil and making them available for plant absorption. We proposed a root exudates-based model to assess the long-term phytoavailability of metals in biosolids-amended soils. The phytoavailability of biosolids-borne metals was defined in terms of a capacity factor and an intensity factor. The plant available metal pool, C0 (capacity factor, mg kg−1), can be estimated by fitting the successive organic acids extraction data to an exponential decay kinetic equation. The field metal removal rate, k (intensity factor, yr−1), can be estimated from the successive extraction-based metal release rate through an effective annual organic acid production in the rhizosphere which was found to be characteristic of plant species. The protocol was successfully used to assess the long-term phytoavailability of metals in biosolids-amended soil from two biosolids land application sites.  相似文献   
16.
This work addresses the effect that plants (Typha latifolia and Carex lurida) have on the reduction of Cr(VI) in wetland sediments. Experiments were carried out using tubular microcosms, where chemical species were monitored along the longitudinal flow axis. Cr(VI) removal was enhanced by the presence of plants. This is explained by a decrease in the redox potential promoted by organic root exudates released by plants. Under these conditions sulfate reduction is enhanced, increasing the concentration of sulfide species in the sediment pore water, which reduce Cr(VI). Evapotranspiration induced by plants also contributed to enhance the reduction of Cr(VI) by concentrating all chemical species in the sediment pore water. Both exudates release and evapotranspiration have a diurnal component that affects Cr(VI) reduction. Concentration profiles were fitted to a kinetic model linking sulfide and Cr(VI) concentrations corrected for evapotranspiration. This expression captures both the longitudinal as well as the diurnal Cr(VI) concentration profiles.  相似文献   
17.
During the abnormal plant conditions, too much information is produced due to momentary plant excursions above alarm limits. This flood of information impedes correct interpretation and correction of plant conditions by the operator. Existing techniques for the design of alarm systems mostly have weak ability to handle complex hazard scenarios and increase the probability of larger safety issues. In this paper, a comprehensive alarm information processing (AIP) technology is introduced, called multi-round alarm management system (MRAMS), including several processing strategies: AIP based on single sensor, AIP based on sensor group, root cause diagnosis based on Bayesian network, sensor fault judgment method and false alarm inhibition method. In case studies, both simulation experiment and pilot application on a real petrochemical plant are presented. Results indicate the MRAMS is helpful in improving the accuracy of correctly diagnosing the root causes and hence avoiding false and redundant alarms. By adopting this new technology, the safe and reliable operation of the plant can be achieved, and the economic loss brought by improper alarms can be reduced.  相似文献   
18.
The current research study focuses to formulate the biosynthesized silver nanoparticles for the first time from silver acetate using methanolic root extracts of Diospyros sylvatica, a member of family Ebenaceae. TEM analysis revealed the average diameter of Ag NPs around 8 nm which is in good agreement with the average crystallite size (10 nm) calculated from X-ray Diffraction (XRD) analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+) ve, Gram (−) ve bacterial and fungal strains. The bioinspired Ag-NP showed promising activity against all the tested bacterial strains and the activity was enhanced with increased dosage levels.  相似文献   
19.
Information on the transfer of radionuclides to fruits was almost absent in the former TRS 364 “Handbook of parameter values for the prediction of radionuclide transfer in temperate environments”. The revision of the Handbook, carried out under the IAEA Programme on Environmental Modelling for RAdiation Safety (EMRAS), takes into account the information generated in the years following the Chernobyl accident and the knowledge produced under the IAEA BIOMASS (Biosphere Modelling and Assessment) Programme in the years 1997–2000. This paper describes the most important processes concerning the behaviour of radionuclides in fruits reported in the IAEA TRS 364 Revision and provides recommendations for research and modelling.  相似文献   
20.
The release of root exudates (REs) provides an important source of soil organic carbon. This work revealed the molecular composition of REs of different plant species including alfalfa (Medicago sativa L.), bean (Phaseolus vulgaris L.), barley (Hordeum vulgare L.), maize (Zea mays), wheat (Triticum aestivum L.), ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima) using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The combination of positive ion mode (+ESI) and negative ion mode (-ESI) increased the number of the molecules detected by ESI FT-ICR MS, and a total of 8758 molecules were identified across all the samples. In detail, lipids and proteins and unsaturated hydrocarbons were more easily detected in +ESI mode, while aromatic compounds with high O/C were readily ionized in -ESI mode, and only 38% of the total assigned formulas were shared by -ESI and +ESI modes. Multivariate statistical analysis of the formulas indicated that the close related plants species secreted REs with similar molecular components. Moreover, the unsaturation degree and nitrogen content were the two key parameters able to distinguish the similarities and differences of molecular components of REs between plant species. The results provided a feasible analysis method for characterization of the molecular components of REs and for the first time characterized the molecular components of REs of a variety of plant species using ESI FT-ICR MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号