首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   38篇
  国内免费   64篇
安全科学   17篇
废物处理   5篇
环保管理   204篇
综合类   145篇
基础理论   78篇
污染及防治   50篇
评价与监测   34篇
社会与环境   36篇
灾害及防治   10篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   11篇
  2019年   23篇
  2018年   22篇
  2017年   14篇
  2016年   35篇
  2015年   22篇
  2014年   18篇
  2013年   28篇
  2012年   32篇
  2011年   51篇
  2010年   26篇
  2009年   31篇
  2008年   27篇
  2007年   35篇
  2006年   36篇
  2005年   30篇
  2004年   14篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有579条查询结果,搜索用时 31 毫秒
21.
以鲜鸡粪、蘑菇渣和污泥按照体积比3∶1∶1混合进行动态堆肥模拟试验.堆肥槽沿物料前进方向分为7个部分,对每个部分按等间距分别做5个水平方向上切分和5个垂直方向上切分,在形成的125个交叉点上进行温度监测.研究结果表明,第1天的混合物料温度在同一层中变异很小,不同层之间略有差异.随着动态过程的进行,同一层温度变异逐渐增大,从第一天相差1~3℃,增加到相差30~40℃,靠近墙体的堆料温度较低,远离墙体的温度较高.随着堆肥时间延长,差异增大.机械翻堆能起到通风的作用,同时使每一个堆方的堆料在纵向方向上上下混合,但达不到横向混匀,因此,靠近墙体两侧的堆料始终处于较低的温度,只有中部能达到较高的温度,以堆肥温度50℃作为无害化指标,自墙体向中心方向的1m为没有达到无害化厚度,无害化体积占堆肥总体积50%.整个动态堆肥过程符合二级动力学方程.  相似文献   
22.
大跨结构多维多点输入抗震研究进展   总被引:3,自引:1,他引:2  
对于大跨度结构来说,应该考虑地震动的多维多点效应。从国内外发展现状及取得的主要研究进展和近期的发展动向等角度,对大跨度结构多维多点输入抗震的研究现状进行了系统的综述和总结。首先论述了多维地震动及其相关性,从地震动的各个分量之间的强度比、频率、持时及相关性等方面说明地震动分量的特性;然后论述地震动时空模型,侧重于反映地震动空间变化的相关函数模型的研究现状;最后比较了大跨度结构考虑多维多点输入的抗震计算方法,包括反应谱法、时程分析法以及随机振动分析法。对今后关于这一问题所应开展的研究提出了建议。  相似文献   
23.
24.
ABSTRACT

The calculation of the combined uncertainty of the international estimated short-term intake (IESTI) of ethephon residues in apples is shown as an example. The ethephon residues in apples were reported by the Joint FAO (Food and Agriculture Organization of the United Nations)/WHO (World Health Organization) Meeting on Pesticide Residues (JMPR). The apple consumption data were taken from the IESTI (international short-term intake) calculation template used by the JMPR. The IESTI was calculated with the currently used method (case 2a) and a proposed one recommended by the EFSA (European Food Safety Authority)/RIVM (Dutch National Institute for Public Health) Scientific Workshop co-sponsored by FAO and WHO. In this example, the ratio of IESTIproposed/IESTIcurrent and their combined relative uncertainty are about 2.8, and 1.7, respectively. The larger IESTI and uncertainty obtained with the proposed equation are the consequence of calculation only with the large portion (LP) instead of its combination with unit mass, and the MRL instead of the highest residue (HR). The LP is the major contributor to the combined uncertainty. Both the calculated IESTI and its combined uncertainty depend on the actual food – pesticide residue combination, and should be calculated for each case.  相似文献   
25.
上海城市样带土壤有机碳空间变异性研究   总被引:2,自引:0,他引:2  
为揭示城市化、工业化等人为活动对土壤有机碳的影响,选择能反映上海城郊乡梯度差异的城市样带,采用地统计学方法对表层土壤样品土壤有机碳的空间变异结构和分布格局进行了分析。结果表明:城市表层土壤有机碳含量均属中等变异,徐汇区土壤有机碳含量呈正态分布,奉贤区、闵行区和所研究样带土壤有机碳含量呈对数正态分布。半方差函数模型拟合结果显示徐汇和闵行区土壤有机碳符合指数模型,奉贤和所研究样带土壤有机碳符合球状模型。通过泛克里格插值得到城市表层土壤有机碳含量空间分布图,发现徐汇、闵行区土壤有机碳呈岛状,奉贤区呈条带状,而所研究样带呈条带和岛状分布相结合的特点。土壤有机碳含量城郊乡梯度差异明显,工业化、城市化、肥料投入与管理等人为因素对城市土壤有机碳空间分布密切相关  相似文献   
26.
Based on multi-year measurements of CH4 exchange in sub-daily resolution we show that clear-cutting of a forest in Southern Germany increased soil temperature and moisture and decreased CH4 uptake. CH4 uptake in the first year after clear-cutting (−4.5 ± 0.2 μg C m−2 h−1) was three times lower than during the pre-harvest period (−14.2 ± 1.3 μg C m−2 h−1). In contrast, selective cutting did not significantly reduce CH4 uptake. Annual mean uptake rates were −1.18 kg C ha−1 yr−1 (spruce control), −1.16 kg C ha−1 yr−1 (selective cut site) and −0.44 kg C ha−1 yr−1 (clear-cut site), respectively. Substantial seasonal and inter-annual variations in CH4 fluxes were observed as a result of significant variability of weather conditions, demonstrating the need for long-term measurements. Our findings imply that a stepwise selective cutting instead of clear-cutting may contribute to mitigating global warming by maintaining a high CH4 uptake capacity of the soil.  相似文献   
27.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   
28.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   
29.
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.  相似文献   
30.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号