首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   421篇
  国内免费   375篇
安全科学   167篇
废物处理   36篇
环保管理   466篇
综合类   642篇
基础理论   736篇
污染及防治   263篇
评价与监测   23篇
社会与环境   21篇
灾害及防治   112篇
  2024年   1篇
  2023年   11篇
  2022年   29篇
  2021年   45篇
  2020年   38篇
  2019年   97篇
  2018年   99篇
  2017年   143篇
  2016年   139篇
  2015年   143篇
  2014年   156篇
  2013年   436篇
  2012年   141篇
  2011年   168篇
  2010年   122篇
  2009年   101篇
  2008年   99篇
  2007年   81篇
  2006年   59篇
  2005年   46篇
  2004年   47篇
  2003年   41篇
  2002年   42篇
  2001年   52篇
  2000年   46篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
排序方式: 共有2466条查询结果,搜索用时 31 毫秒
661.
Nitrogen interception in floodwater of rice field in Taihu region of China   总被引:3,自引:0,他引:3  
A field experiment located in Taihu Lake Basin of China was conducted,by application of urea or a mixture of urea with manure, to elucidate the interception of nitrogen(N)export in a typical rice field through"zero-drainage water management"combined with sound irrigation,rainfall forecasting and field drying,N concentrations in floodwater rapidly declined before the first event of field drying after three split fertilizations,and subsequently tended to retum to the background level.Before the first field drying,total particulate nitrogen(TPN)was the predominant N form in floodwater of plots with no N input,dissolved inorganic nitrogen(DIN)on plots that received urea only,and dissolved organic nitrogen(DON)on plots treated with the mixture of urea and manure.Thereafter TPN became the major form.No N export was found from the rice field,but total nitrogen(TN)of 15.8 kg/hm~2 was remained,mainly due to soil N sorption.The results recommended the zero-drainage water management for full-scale areas for minimizing N export.  相似文献   
662.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   
663.
Abstract: Integrating spatial datasets from diverse sources is essential for cross‐border environmental investigations and decision‐making. This is a little investigated topic that has profound implications for the availability and reliability of spatial data. At present, ground‐water hydrostratigraphic models exist for both the Canadian or for the United States (U.S.) portion of the aquifer but few are integrated across the border. In this paper, we describe the challenges of integrating multiple source, large datasets for development of a ground‐water hydrostratigraphic model for the Abbotsford‐Sumas Aquifer. Growing concerns in Canada regarding excessive withdrawal south of the border and in the U.S. regarding nitrate contamination originating north of the border make this particular aquifer one of international interest. While much emphasis in GIScience is on theoretical solutions to data integration, such as current ontology research, this study addresses pragmatic ways of integrating data across borders. Numerous interoperability challenges including the availability of data, metadata, data formats and quality, database structure, semantics, policies, and cooperation are identified as inhibitors of data integration for cross‐border studies. The final section of the paper outlines two possible solutions for standardizing classification schemes for ground‐water models – once data heterogeneity has been addressed.  相似文献   
664.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   
665.
Abstract: Information on evapotranspiration (ET) can help us understand water balance, particularly in forested watersheds. Previous studies in China show that ET was relatively low (30‐40% of total precipitation) in the Minjiang Valley located in the upper reach of the Yangtze River Basin. However, this conclusion was derived from research on small‐scale watersheds (<100 km2). The objective of this paper was to present ET information on meso‐scale watersheds in the Minjiang Valley. Four meso‐scale watersheds (1,700‐5,600 km2) located in the Minjiang Valley were used to estimate ET using the water balance approach. We first generated forest vegetation variables (coniferous forest percentage, forest cover percentage, and derived forest vegetation index) using remote sensing data. Landsat 5 TM satellite images, acquired on June 26, 1994, were selected for the vegetation classification. Actual annual ET was calculated based on 11‐year estimated precipitation and measured streamflow data (1992‐2002). We also calculated potential ET (PET) using an improved Thornthwaite model for all four watersheds for the period of 1992‐1998. PET can provide additional information about potential capacity of water flux to atmosphere in the region. Seasonal (dry and rainy) PET and ET for all studied watersheds were also estimated for comparison purposes as the water balance approach, at shorter than annual scales, would likely provide inaccurate estimates of ET. The dominant vegetations in the Minjiang Valley were grasslands, conifer forests, and shrub‐lands. Our results confirmed that both ET and PET for three studied meso‐scale watersheds in the Minjiang Valley is relatively low (39.5‐43.8 and 28.2‐47.7% for ET and PET, respectively), with an exception of ET in the Yuzixi watershed being 71.1%. This result is generally consistent with previous research at small watershed scales. Furthermore, the low ET across various scales in the Minjiang Valley may be related to the unique deeply cut valley environment.  相似文献   
666.
Abstract: The increase of coverage of forest/vegetation is imperative to improve the environment in dry‐land areas of China, especially for protecting soil against serious erosion and sandstorms. However, inherent severe water shortages, drought stresses, and increasing water use competition greatly restrict the reforestation. Notably, the water‐yield reduction after afforestation generates intense debate about the correct approach to afforestation and forest management in dry‐land areas. However, most studies on water‐yield reduction of forests have been at catchment scales, and there are few studies of the response of total evapotranspiration (ET) and its partitioning to vegetation structure change. This motivates us to learn the linkage between hydrological processes and vegetation structure in slope ecosystems. Therefore, an ecohydrological study was carried out by measuring the individual items of water balance on sloping plots covered by different vegetation types in the semiarid Liupan Mountains of northwest China. The ratio of precipitation consumed as ET was about 60% for grassland, 93% for shrubs, and >95% for forestland. Thus, the water yield was very low, site‐specific, and sensitive to vegetation change. Conversion of grassland to forest decreased the annual water yield from slope by 50‐100 mm. In certain periods, the plantations at lower slopes even consumed the runon from upper slopes. Reducing the density of forests and shrubs by thinning was not an efficient approach to minimize water use. Leaf area index was a better indicator than plant density to relate ET to vegetation structure and to evaluate the soil water carrying capacity for vegetation (i.e., the maximum amount of vegetation that can be supported by the available soil water for an extended time). Selecting proper vegetation types and plant species, based on site soil water condition, may be more effective than the forest density regulation to minimize water‐yield reduction by vegetation coverage increase and notably by reforestation. Finally, the focuses in future research to improve the forest‐water relations in dry‐land areas are recommended as follows: vegetation growth dynamics driven by environment especially water conditions, coupling of ecological and hydrological processes, further development of distributed ecohydrological models, quantitative relation of eco‐water quota of ecosystems with vegetation structures, multi‐scaled evaluation of soil water carrying capacity for vegetation, and the development of widely applicable decision support tools.  相似文献   
667.
Abstract: The residents of Nassau County Long Island, New York receive all of their potable drinking water from the Upper Glacial, Jameco/Magothy (Magothy), North Shore, and Lloyd aquifers. As the population of Nassau County grew from 1930 to 1970, the demand on the ground‐water resources also grew. However, no one was looking at the potential impact of withdrawing up to 180 mgd (7.9 m3/s) by over 50 independent water purveyors. Some coastal community wells on the north and south shores of Nassau County were being impacted by saltwater intrusion. The New York State Legislature formed a commission to look into the water resources in 1972. The commission projected extensive population growth and a corresponding increase in pumping resulting in a projected 93.5 to 123 mgd (4.1 to 5.5 m3/s) deficit by 2000. In 1986, the New York Legislature passed legislation to strengthen the well permit program and also establish a moratorium on new withdrawals from the Lloyd aquifer to protect the coastal community’s only remaining supply of drinking water. Over 30 years has passed since the New York Legislature made these population and pumping projections and it is time to take a look at the accuracy of the projections that led to the moratorium. United States Census data shows that the population of Nassau County did not increase but decreased from 1970 to 2000. Records show that pumping in Nassau County was relatively stable fluctuating between 170 and 200 mgd (7.5 to 8.8 m3/s) from 1970 to 2004, well below the projection of 242 to 321 mgd (10.6 to 14.1 m3/s). Therefore, the population and water demand never grew to projected values and the projected threat to the coastal communities has diminished. With a stable population and water demand, its time to take a fresh look at proactive ground‐water resource management in Nassau County. One example of proactive ground‐water management that is being considered in New Jersey where conditions are similar uses a ground‐water flow model to balance ground water withdrawals, an interconnection model to match supply with demand using available interconnections, and a hydraulic model to balance flow in water mains. New Jersey also conducted an interconnection study to look into how systems with excess capacity could be used to balance withdrawals in stressed aquifer areas with withdrawals in unstressed areas. Using these proactive ground‐water management tools, ground‐water extraction could be balanced across Nassau County to mitigate potential impacts from saltwater intrusion and provide most water purveyors with a redundant supply that could be used during water emergencies.  相似文献   
668.
氧化亚氮形成的微生物学分子机制研究进展   总被引:1,自引:0,他引:1  
1 氧化亚氮 (N2 O)的形成N2 O是继CO2 、CH4之后的第三大温室气体 ,它能破坏大气中的臭氧层 .在过去的 2 0~ 30年间 ,N2 O以每年 0 .2 %~ 0 .3%的速率增长 ,并且有进一步增长的趋势[1 ] .地球上人类和其他生物的活动是N2 O产生的主要来源 ,而微生物是其中最重要的生物源 .微生物产生N2 O的机理主要是通过硝化作用和反硝化作用过程进行的 ,如图 1所示 .反硝化过程中N2 O的形成 :硝化过程中N2 O的形成 :图 1 N2 O的形成Fig.1 FormationofN2 O  催化反硝化过程的酶有 4种 :硝酸还原酶 (Nar)、亚…  相似文献   
669.
土壤中的反硝化作用由于直接影响到肥料氮的利用率和环境问题,仍然是氮素研究领域的热点和难点之一,而反硝化作用研究的进展在很大程度上依赖与土壤反硝化的田间测定方法的建立。文章就目前反硝化研究领域常用的15N平衡差值法、15N示踪气体通量法、乙炔抑制气室法、乙炔抑制土柱法的原理、气体样的采集、测定和计算作了综述,以期为土壤反硝化的研究提供依据。  相似文献   
670.
We developed a simple conceptual model that tracks nitrogen and carbon jointly through an N fertilized forest ecosystem. The stimulation of growth increases the litterfall and imports substrate for soil microorganisms. Microbial biomass forms according to the supply of C and N. The formation of microbial biomass is accompanied by respiratory C losses. The quantity of CO2 efflux depends on the C use efficiency of microbes. When excess N is available, the microbial activity is accelerated and the demand for substrate is high. Litterfall supplies an insufficient amount of C to the soil. In such a case, labile soil C is mineralized and the net effect of N fertilization is a loss of soil C. A strong N fertilization effect on the aboveground biomass can offset the soil C loss. In the case of a low N dosage or high N losses due to leaching or emission of nitrogen oxides, the soil C loss is small. The conceptual model was applied to a case study. The field data, collected over a time span of several decades, could not support sound conclusions on the temporal trend of soil C because the spatial and temporal variability of the chemical data was high. The conceptual model allowed to give an evaluation of the fertilization effect on soil C based on reproducible principles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号