首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635篇
  免费   30篇
  国内免费   107篇
安全科学   33篇
废物处理   20篇
环保管理   241篇
综合类   451篇
基础理论   221篇
污染及防治   489篇
评价与监测   241篇
社会与环境   61篇
灾害及防治   15篇
  2024年   3篇
  2023年   12篇
  2022年   16篇
  2021年   28篇
  2020年   49篇
  2019年   22篇
  2018年   41篇
  2017年   27篇
  2016年   42篇
  2015年   51篇
  2014年   48篇
  2013年   111篇
  2012年   92篇
  2011年   181篇
  2010年   106篇
  2009年   181篇
  2008年   163篇
  2007年   126篇
  2006年   72篇
  2005年   43篇
  2004年   34篇
  2003年   45篇
  2002年   35篇
  2001年   25篇
  2000年   38篇
  1999年   19篇
  1998年   16篇
  1997年   18篇
  1996年   19篇
  1995年   11篇
  1994年   16篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   9篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1772条查询结果,搜索用时 31 毫秒
961.
Monthly plutonium and thorium depositions at Tsukuba (28 m asl) and Mt. Haruna (1370 m asl) were measured during 2006 and 2007 (Jan 2006-Dec 2007 at Tsukuba, Nov 2006-Dec 2007 at Mt. Haruna). The monthly 239,240Pu depositions ranged from 0.044 to 2.67 mBq m−2 at Tsukuba and from 0.05 to 0.9 mBq m−2 at Mt. Haruna during the measurement periods. Monthly 239,240Pu deposition did not differ markedly between the two sites except in April 2007. Seasonal pattern of monthly 239,240Pu depositions at both sites showed high in spring and low in summer, and typical of seasonal variations in northeastern Asia. Thorium deposition at Tsukuba was higher than that at Mt. Haruna except in May and June 2007. 230Th/232Th activity ratios were used to partition deposition samples into locally and remotely derived fractions. The results revealed that a major proportion of total 239,240Pu and Th deposits are derived from remote sources, especially in spring.  相似文献   
962.
Lee WM  Kwak JI  An YJ 《Chemosphere》2012,86(5):491-499
Understanding some adverse effects of nanoparticles in edible crop plants is a matter of importance because nanoparticles are often released into soil environments. We investigated the phytotoxicity of silver nanoparticles (AgNPs) on the important crop plants, Phaseolus radiatus and Sorghum bicolor. The silver nanoparticles were selected for this study because of their OECD designation as a priority nanomaterial. The toxicity and bioavailability of AgNPs in the crop plant species P. radiatus and S. bicolor were evaluated in both agar and soil media. The seedling growth of test species was adversely affected by exposure to AgNPs. We found evidence of nanoparticle uptake by plants using electron microscopic studies. In the agar tests, P. radiatus and S. bicolor showed a concentration dependent-growth inhibition effect. Measurements of the growth rate of P. radiatus were not affected in the soil studies by impediment within the concentrations tested herein. Bioavailability of nanoparticles was reduced in the soil, and the dissolved silver ion effect also differed in the soil as compared to the agar. The properties of nanoparticles have been shown to change in soil, so this phenomenon has been attributed to the reduced toxicity of AgNPs to plants in soil medium. The application of nanoparticles in soil is a matter of great importance to elucidate the terrestrial toxicity of nanoparticles.  相似文献   
963.
A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H2O2, 6 and 65 g kg−1) and FeSO4 were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected.  相似文献   
964.
Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions   总被引:1,自引:0,他引:1  
Zhong L  Yang J 《Chemosphere》2012,86(10):973-978
Detoxification of Cr(VI) through reduction by organic reductants has been regarded as an effective way for remediation of Cr(VI)-polluted soils. However, such remediation strategy would be limited in practical applications due to the low Cr(VI) reduction rate. In this study, the catalytic effect of two Fe-rich soils (Ultisol and Oxisol) on Cr(VI) reduction by malic acid was evaluated. As the results shown, the two soils could obviously accelerate the reduction of Cr(VI) by malic acid at low pH conditions, while such catalytic effect was gradually suppressed as the increase in pH. After reaction for 48 h at pH 3.2, Oxalic acid was found in the supernatant of Ultisol, suggesting the oxidization of hydroxyl in malic acid to carboxyl and breakage of the bond between C2 and C3. It was also found that the catalytic reactivity of Ultisol was more significant than that of Oxisol, which could be partly attributed to the fact that the amount of Fe(II) released from the reductive dissolution of Ultisol by malic acid was larger than that of Oxisol. With addition of Al(III), the catalytic effect from Ultisol was inhibited across the pH range examined. On the contrary, the presence of Cu(II) would increase the catalytic effect of Ultisol, which was more pronounced with the increase in pH. This study proposed a potential way for elimination of the environmental risks posed by the Cr(VI) contamination by use of the natural soil surfaces to catalyze Cr(VI) reduction by the organic reductant such as malic acid, a kind of organic reductant originating from soil organic decomposition process or plant excretion.  相似文献   
965.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   
966.
Supercritical fluid extraction (SFE) with pure carbon dioxide was performed at increasingly strong conditions to investigate differential binding of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in two impacted soils, in their sieved size fractions, and in small (a few mg) samples of industry-related waste products separated from impacted soil. The binding strengths of PCDD/Fs were shown to be different in the two soils, and in their different soil particle size fractions. As might be expected based on surface area considerations, one soil showed the strongest binding in the smallest (<5 μm) sieved fraction. However, the other soil showed the strongest binding in the larger sized fractions, possibly indicating that process-related particles could be controlling PCDD/F binding. Selective SFE of various types of particles including black carbon and charcoal (separated from soil), and from a suspected process anode residue did show different PCDD/F binding behavior ranging from quite weak binding (charcoal) to very strong binding (anode particles). Shifts to the stronger SFE fractions in the soils after activated carbon treatment agreed well with the decreases previously found in the uptake of PCDD/Fs by earthworms, as well as decreases in their freely-dissolved aqueous concentrations in soil/water slurries. These results show that, as previously demonstrated for PAHs and PCBs, selective SFE can be a useful tool to investigate differences in PCDD/F binding behaviors in impacted soils and sediments and their component parts, as well as a rapid tool for estimating the effectiveness of activated carbon treatments on decreasing the bioavailability of PCDD/Fs in soils and sediments.  相似文献   
967.
Transfer of indicator polychlorobiphenyls (PCBs) from soil into hen eggs may occur in hens reared outdoor, which ingest significant amounts of soil. This transfer depends on the bioavailability of the ingested compounds. The impact of soil on the bioavailability of indicator PCBs was assessed by means by a relative bioavailability (RBA) trial, in which their deposition in egg yolk and in abdominal fat, in response to their ingestion through contaminated-soil and through spiked-oil were compared. A sandy soil (709 μg indicator PCBs kg−1 dry matter) was collected in the vicinity of a former fire involving treated wood. Twenty-eight laying hens were individually housed and fed one of the seven experimental diets during 14 d. The seven experimental diets were an uncontaminated control diet, three diets in which contaminated soil was introduced at levels of 3%, 6% and 9% and three diets in which spiked oil was introduced to achieve similar levels and profile of contaminants. Yolk, abdominal fat and liver were collected at the end of exposure. Indicator PCBs were extracted by ASE (Accelerated Solvent Extraction) and analyzed by GC-HMRS. Within each ingested matrix, the concentration of indicator PCBs in yolk and in abdominal fat linearly increased with the amount of indicator PCB ingested (P < 0.001). Except for PCB 28, the slopes of the responses to soil and to oil could not be differentiated (P > 0.1). RBA estimates did not differ from 1 for all indicator PCBs except for PCB 28, for which it was 0.58-0.59. Measurements performed on liver confirm these conclusions.  相似文献   
968.
The application of sewage sludge to land can expose soils to a range of associated chemical toxicants. In this paper we explore the effects of the broad spectrum anti-microbial compound triclosan on the phenotypic composition of the microbial communities of three soils of contrasting texture (loamy sand, sandy loam and clay) using phospholipid fatty-acid (PLFA) analysis. Each soil type was dosed and subsequently re-dosed 6 weeks later with triclosan at five nominal concentrations in microcosms (10, 100, 500, 1000 mg kg−1 and a zero-dose control). PLFA profiles were analysed using multivariate statistics focussing on changes in the soil phenotypic community structure. Additionally, ratios of fungal:bacterial PLFA indicators and cyclo:mono-unsaturated PLFAs (a common stress indicator) were calculated. It was hypothesised that triclosan addition would alter the community structure in each soil with a particular effect on the fungal:bacterial ratio, since bacteria are likely to be more susceptible to triclosan than fungi. It was also hypothesised that the PLFA response to re-dosing would be suppressed due to acclimation. Although the microbial community structure changed over the course of the experiment, the response was complex. Soil type and time emerged as the most important explanatory factors. Principal component analysis was used to detect phenotypic responses to different doses of triclosan in each soil. As expected, there was a significant increase in the fungal:bacterial ratio with triclosan dose especially in treatments with the highest nominal concentrations. Furthermore, the PLFA response to re-dosing was negligible in all soils confirming the acclimation hypothesis.  相似文献   
969.
A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 ± 44% and the PAC amendment reduced them by 72 ± 19%. For the investigated plants the BSAFs were reduced by 46 ± 36% and 53 ± 22% by the GAC and PAC, respectively.  相似文献   
970.
Transport of silver nanoparticles (AgNPs) in soil   总被引:1,自引:0,他引:1  
Sagee O  Dror I  Berkowitz B 《Chemosphere》2012,88(5):670-675
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号