首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   6篇
废物处理   1篇
环保管理   3篇
综合类   9篇
基础理论   4篇
污染及防治   3篇
社会与环境   3篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
On-site sanitation solutions have gained much interest in recent years. One such solution is the urine diverting vermicomposting toilet (UDVT). This study evaluated the hygienic quality of the composted material in six UDVTs in operation in France. Samples were taken from three sampling positions in each toilet, with increasing distance from the fresh material. The concentration of Salmonella spp., Enterococcus spp., thermotolarent coliforms and coliphages were analysed and plotted against a number of variables. The variables found to have the greatest impact was the pH (for Enterococcus spp. and thermotolarent coliforms (TTC)) and time since last maintenance (coliphages). The pH was found to correlate with the material maturity. The current practise of maintenance can cause recontamination of the stabilised material and increase the risk of regrowth of pathogenic microorganisms. A modification in the maintenance procedure, in which a fourth maturation point is introduced, would eliminate this risk. UDVTs were found to be a good on-site sanitation option as the maintenance requirement is small and the system effectively reduced odour and concentration of pathogen and indicator organisms in human waste while keeping the accumulation of material down to a minimum. If the vermicompost is to be used for crops consumed raw, an additional sanitisation step is recommended.  相似文献   
12.
用甲苯直接萃取酸化后尿中的除草醚,以气相色谱法测定。方法的最低检测限为2μl/l;精密度为4.7%;回收率为95%。  相似文献   
13.
介绍一种新的无模型体系的优化方法并将该法,用于原子吸收光谱法测定尿液中的钙,实验结果令人满意。  相似文献   
14.
Xu K  Wang C  Liu H  Qian Y 《Chemosphere》2011,84(2):207-212
This study investigated the simultaneous removal of P and K from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate (MPP, MgKPO4·6H2O) in bench-scale experiments. Results show that the removal efficiencies of P and K are mainly determined by the solution pH and the molar ratio of Mg:K:P. Co-precipitation of struvite-type compounds, i.e., magnesium ammonium phosphate hexahydrate (MAP, MgNH4PO4·6H2O), magnesium sodium phosphate heptahydrate (MSP, MgNaPO4·7H2O), and MPP, was confirmed by analysis of the solid precipitates using a Scanning Electron Microscope/Energy Dispersive X-ray Apparatus and an X-ray Diffractometer. The co-precipitation significantly influenced the removal of K. As much ammonium as possible should be removed prior to MPP precipitation because MAP had higher tendency to form than MPP. The inevitable co-precipitation of MPP and MSP resulted in the addition of more MgCl2·6H2O and Na2HPO4·12H2O to obtain the high removal of K. In total, the removal efficiencies of P and K were 77% and 98%, respectively, in the absence of ammonium when pH was 10 and the molar ratio of Mg:K:P was 2:1:2. The results indicate that the MPP precipitation is an efficient method for the simultaneous removal of P and K to yield multi-nutrient products.  相似文献   
15.
Disinfection by-products(DBPs) are a complex mixture of compounds unintentionally formed as a result of disinfection processes used to treat drinking water. Effects of long-term exposure to DBPs are mostly unknown and were the subject of recent epidemiological studies. However,most bioanalytical methods focus on a select few DBPs. In this study, a new comprehensive bioanalytical method has been developed that can quantify mixtures of organic halogenated compounds, including DBPs, in human urine as total organic chlorine(TOCl), total organic bromine(TOBr), and total organic iodine(TOI). The optimized method consists of urine dilution, adsorption to activated carbon, pyrolysis of activated carbon, absorption of gases in an aqueous solution, and halide analysis with ion chromatography and inductively coupled plasma-mass spectrometry. Spike recoveries for TOCl, TOBr, and TOI measurements ranged between 78% and 99%. Average TOCl, TOBr, and TOI concentrations in five urine samples from volunteers who consumed tap water were 1850, 82, and 21.0 μg/L as X~-, respectively.Volunteers who consumed spring water(control) had TOCl, TOBr, and TOI average concentrations in urine of 1090, 88, and 10.3 μg/L as X~-, respectively. TOCl and TOI in the urine samples from tap water consumers were higher than the control. However, TOBr was slightly lower in tap water urine samples compared to mineral water urine samples, indicating other sources of environmental exposure other than drinking water. A larger sample population that consumes tap water from different cities and mineral water is needed to determine TOCl, TOBr, and TOI exposure from drinking water.  相似文献   
16.
The direct urea fuel cell (DUFC) is a low cost and competitive approach for contemporaneous urine or urea-contaminated wastewater treatment and electricity generation. However, the lack of efficient urea oxidation reaction (UOR) electrocatalysts and suitable electron acceptors remains a challenge for practical applications. Here, we developed a DUFC system using Ni2[email protected] foam as the anode and peroxymonosulfate (PMS) as the chemical oxidizers. The Ni2[email protected] foam anode showed a high oxidation activity for UOR with an onset potential of 0.30 V vs. Ag/AgCl and Tafel slope of 34.4 mV/dec. PMS with high theoretical potential improved the cell voltage to 1.43 V. A power density of DUFC up to 4.91 mW/cm2 was achieved using PMS at room temperature, which was approximately twice as high as using H2O2 (2.38 mW/cm2). NiII/NiIII was the redox active species on the Ni2P anode in the DUFC process, and NiII was electrochemically oxidized to NiIII, which reverted to NiII by urea reduction. When real human urine was used as the fuel, a power density of 4.46 mW/cm2 can be achieved at room temperature. This DUFC with high cell performance showed potential application in urea wastewater treatment.  相似文献   
17.
缺氧/好氧膜生物反应器处理尿液污水的研究   总被引:3,自引:0,他引:3  
采用缺氧/好氧膜生物反应器(A/O MBR)对尿液污水进行处理.结果表明:当进水NH 4-N、COD和BOD5分别为400~980(容积负荷为0.42~1.01 kg/(m3·d))、390~630和120~280 mg/L时,平均去除率分别为79.5%、75.1%和95.0%,同时系统对色度也有一定的脱除效果,经过A/O MBR和活性炭(PAC)处理后出水色度降为8倍;运行期间膜污染较严重,膜内表面微生物的滋生和膜外表面形成沉积层是造成膜污染的主要原因.  相似文献   
18.
Urine source separation (NoMix technology) is a promising innovation in wastewater management. To improve and further develop NoMix technology, it has been implemented in four Swiss households and at our research institute (Eawag). We conducted measurements during one year on frequency of toilet usage (in households 5.2/person/day for weekdays, and 6.3/person/day for weekends), flushing behavior (30–85% small flushes), and recovered urine. We calculate the amount of urine effectively recovered per voiding in NoMix toilets (138 ml/flush in households; 309 ml/flush in women's toilets at Eawag), and waterfree urinals (225 ml/usage). We estimate urine recovery in the households to be maximally 70–75% of the expected quantity, leaving room for technical and behavioral improvements. Based on sampling of N and P concentrations, we suspect nitrogen losses in the extended urine piping system. For households and workplaces, the daily and weekly flushing pattern is recorded. Our results are in accordance with literature data from a shorter period but with more people. These results represent a good dimensioning basis for future urine source separation applications. An example of extrapolation to an entire watershed is presented. The flushing pattern corresponds well with the typical nitrogen loading of a treatment plant.  相似文献   
19.
Xu K  Wang C  Wang X  Qian Y 《Chemosphere》2012,88(2):219-223
The simultaneous removal of K and P from urine for nutrient recycling by crystallization of magnesium potassium phosphate hexahydrate (MPP) in a laboratory-scale draft tube and baffle reactor (DTBR) is investigated. Results show that mixing speed and hydraulic retention time are important operating factors that influence crystallization and crystal settlement. Slurry should be discharged at a crystal retention time of 11 h to maintain fluidity in the reactor. Further applications of the DTBR using real urine (pretreated by ammonia stripping and diluted five times) showed that 76% K and 68% P were recycled to multi-nutrient products. The crystals collected were characterized and confirmed mainly as a mixture of magnesium ammonium phosphate hexahydrate, MPP, and magnesium sodium phosphate heptahydrate. Results indicate that the DTBR effectively achieved the simultaneous recycling of K and P from urine to multi-nutrient products through MPP crystallization.  相似文献   
20.
In the aftermath of the Chernobyl nuclear power plant accident, a research group of the Italian National Institute of Health (Istituto Superiore di Sanità) carried out two research programmes on maternal milk. One concerned the transfer of caesium radionuclides from the diet to breast milk. In the other, the activity concentrations of 137Cs were also determined in urine and placenta. The first study estimated the mothers’ average 137Cs dietary intake, in the second study the intake was evaluated individually for each subject. In 2004, the International Commission on Radiological Protection published modified systemic biokinetic models which also account for transfer to breast milk. The model for caesium radionuclides was implemented and tested by the authors with the experimental data described above. A good agreement was obtained between measured data and model simulations of 137Cs activity concentration in human milk. The model, however, tends to systematically overestimate 137Cs activity concentration in urine, in which case the agreement is to be considered satisfactory in terms of order of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号