首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1047篇
  免费   95篇
  国内免费   847篇
安全科学   114篇
废物处理   88篇
环保管理   56篇
综合类   1034篇
基础理论   263篇
污染及防治   409篇
评价与监测   18篇
社会与环境   5篇
灾害及防治   2篇
  2024年   5篇
  2023年   32篇
  2022年   80篇
  2021年   77篇
  2020年   80篇
  2019年   72篇
  2018年   93篇
  2017年   113篇
  2016年   101篇
  2015年   127篇
  2014年   129篇
  2013年   151篇
  2012年   139篇
  2011年   120篇
  2010年   91篇
  2009年   97篇
  2008年   55篇
  2007年   90篇
  2006年   80篇
  2005年   42篇
  2004年   32篇
  2003年   40篇
  2002年   32篇
  2001年   20篇
  2000年   14篇
  1999年   17篇
  1998年   11篇
  1997年   12篇
  1996年   12篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1989条查询结果,搜索用时 0 毫秒
41.
The adsorption behaviour of Basic Red 12, Acid Orange 7 and Acid Blue 1 on zinc oxide nanoparticles (ZNP) has been investigated to understand the physicochemical process involved and to explore the possible use of nanoparticles in the treatment and management of textile waste matter. The dye removal capacity of ZNP towards Basic Red 12, Acid Orange 7 and Acid Blue 1 was found to be 15.64, 6.78 and 6.38 mg g?1, respectively. The adsorption process was pH dependent and optimum pH values of 9.0, 2.0 and 4.0 were obtained for Basic Red 12, Acid Orange 7 and Acid Blue 1, respectively. Equilibrium was established after 1.0 h for all dyes. Langmuir, Freundlich and Temkin isotherm models were applied to the system. The adsorbent ZNP was characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Fourier transform infrared (FTIR) techniques. SEM analysis revealed the noticeable nanoporous morphology of the material. The results of FTIR spectroscopy showed that the process is driven by an electrostatic complexation mechanism. XRD studies revealed the nanocrystalline structure of ZNP. BET surface area measurement suggested a high pore volume and large surface area for the adsorbent. The kinetic measurements suggested pseudo-second-order kinetic processes with high regression coefficients and smaller standard error of estimate values and lower residual sum of squares. The thermodynamic measurements suggested that all processes were exothermic and accompanied by negative values for Δ G0, Δ S0 and Δ H0.  相似文献   
42.
设计了以溶液初始pH值、3,3’,4,4’-四氯联苯(PCB77)初始浓度、纳米零价铁(Fe0)投加量、纳米零价硅(Si0)投加量、腐殖酸和环糊精浓度为影响因素的正交试验,研究纳米Fe0降解PCB77时各因素对反应体系中PCB77残留率、氢离子浓度及氧化还原电位变化的影响及其相互关系。结果表明,在溶液初始pH值为4.5,初始ρ(PCB77)为1 mg.L-1,纳米Fe0投加量为10 g.L-1,纳米Si0投加量为0,ρ(腐殖酸)为0.25 g.L-1,ρ(环糊精)为1 g.L-1时,反应2 h后,PCB77残留率最低,为35.2%。溶液初始pH值对反应体系中PCB77的残留率影响最大,纳米Fe0投加量次之;溶液初始pH值对反应体系中氢离子浓度变化影响最大,环糊精投加量次之;PCB77初始浓度对反应体系中氧化还原电位变化影响最大,纳米Fe0投加量次之。  相似文献   
43.
Zero-valent iron (ZVI) was loaded on expanded graphite (EG) to produce a composite material (EG-ZVI) for efficient removal of hexavalent chromium (Cr(VI)). EG and EG-ZVI were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller (BET) analysis. EG-ZVI had a high specific surface area and contained sub-micron sized particles of zero-valent iron. Batch experiments were employed to evaluate the Cr(VI) removal performance. The results showed that the Cr(VI) removal rate was 98.80% for EG-ZVI, which was higher than that for both EG (10.00%) and ZVI (29.80%). Furthermore, the removal rate of Cr(VI) by EG-ZVI showed little dependence on solution pH within a pH range of 1–9. Even at pH 11, a Cr(VI) removal rate of 62.44% was obtained after reaction for 1 hr. EG-ZVI could enhance the removal of Cr(VI) via chemical reduction and physical adsorption, respectively. X-ray photoelectron spectroscopy (XPS) was used to analyze the mechanisms of Cr(VI) removal, which indicated that the ZVI loaded on the surface was oxidized, and the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)–Fe(III) hydroxide/oxyhydroxide on the surface of EG-ZVI.  相似文献   
44.
硫铁填料和微电流强化再生水脱氮除磷的研究   总被引:5,自引:0,他引:5  
为提高再生水质量,在不同C/N和HRT条件下,对比分析硫铁复合填料和微电流作用强化再生水深度脱氮除磷效果.结果表明,硫铁复合填料和微电流作用均能够强化氮、磷的深度去除效果,且二者结合能够使反硝化系统pH值稳定在7.2~8.5之间.系统中TN主要靠异养反硝化、氢自养反硝化和硫自养反硝化作用去除,94.04%的TP是以生成磷酸铁沉淀的形式去除.分别从填料上取生物膜,进行Miseq高通量测序,构建细菌16S rRNA基因克隆文库.结果发现,在仅有海绵铁作用系统中,同时具有异养反硝化和氢自养反硝化功能的细菌所占比例达到29.47%;硫铁复合填料和硫铁微电流作用系统中,具有硫自养反硝化功能的Thiobacillus(硫杆菌属)所占比例分别达到60.47%和40.62%.因此,硫铁复合填料和微电流作用用于强化再生水深度脱氮除磷具有明显的优势.  相似文献   
45.
Zinc oxide nanoparticles (ZnO NPs) are being widely investigated in a bioassay due to potential negative effects to biological receptor. The dissolution of metal nanoparticles such as ZnO NPs is crucial to interpret nanotoxicity results because ZnO NPs can release toxic-free ions in exposure media. In the present study, dissolution of ZnO NPs was evaluated in three selected synthetic media for aquatic toxicological testing: Elendt M4 daphnia medium, OECD algal medium, and fish embryo rearing solution. Both media are currently recommended for OECD testing for daphnia and algae. Time-dependent dissolution of ZnO NPs has been investigated in terms of sonication time to be used for the preparation of aqueous NPs suspension, and dissolution time corresponding to exposure period in toxicity testing. Since sonication is widely applied for NPs dispersion in the most of nanotoxicological testing, the emphasis of this study was on the dissolution of NPs as a function of sonication time. We also investigated the concentration-dependent dissolution of ZnO NPs. Our results demonstrated that dissolution of ZnO NPs was significantly affected by sonication and dissolution time, as well as NPs concentration. This study showed that parameters affecting dissolution of ZnO NPs should be considered in nanotoxicological testing.  相似文献   
46.
The use of higher dosage and repeated applications of conventional pesticides have led to the rapid development of insect resistance to pesticide and adverse effects on human health and environment. Accordingly, researchers are prompted to identify an alternative entomotoxic agent for crop protection. Nanocides are being considered as alternatives to conventional insecticides because they are expected to lessen the application rate and reduce the chances of resistance development in pests. In this study, we evaluated the entomotoxic effects of nanosilica on larvae of Plutella xylostella, in a laboratory by using dust spray, larva dipping, leaf dipping, and solution spray methods. Dust treatment showed a more highly significant effect than the other three treatments. The mortality percentage increased up to 58% and 85% at 24 and 72 h after treatment, respectively, when nanosilica was applied at a rate of 1 mg cm?2. In all four bioassays, mortality rate increased with both increased time after nanosilica exposure and increased concentration. Light microscopy and scanning electron microscopy images showed that larval death was due to desiccation, body wall abrasion, and spiracle blockage. These results suggested that nanosilica can be an alternative to conventional pesticides if dust formulation would be properly used.  相似文献   
47.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   
48.
Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ.  相似文献   
49.
采用US/Fe0系统去除阳离子红GTL,考察了pH值、Fe0用量、超声功率及活性炭、H2O2、盐分添加对阳离子红GTL去除率的影响,利用紫外-可见吸收光谱变化查明阳离子红GTL在不同条件下的去除差异性,利用SEM解析铁的形态与染料去除的相关性。结果表明: pH≥5.0时超声和Fe0具有协同效应,Fe0用量2 g/L,pH=7.0,超声功率135 W,阳离子红GTL去除率达到96.07%;一定量的活性炭、H2O2、盐分添加会加速染料去除,US加速Fe0反应速度,但不改变染料降解机理,添加活性炭能够彻底降解阳离子红GTL,添加H2O2提供的氧化环境抑制苯胺类化合物生成;铁的形态及与染料的接触是影响染料去除效果的重要原因。  相似文献   
50.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号