首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3005篇
  免费   400篇
  国内免费   1801篇
安全科学   243篇
废物处理   267篇
环保管理   426篇
综合类   2466篇
基础理论   825篇
环境理论   1篇
污染及防治   817篇
评价与监测   82篇
社会与环境   62篇
灾害及防治   17篇
  2024年   7篇
  2023年   49篇
  2022年   96篇
  2021年   150篇
  2020年   123篇
  2019年   150篇
  2018年   135篇
  2017年   158篇
  2016年   191篇
  2015年   253篇
  2014年   231篇
  2013年   479篇
  2012年   401篇
  2011年   349篇
  2010年   270篇
  2009年   319篇
  2008年   202篇
  2007年   243篇
  2006年   269篇
  2005年   155篇
  2004年   124篇
  2003年   127篇
  2002年   99篇
  2001年   85篇
  2000年   69篇
  1999年   56篇
  1998年   63篇
  1997年   45篇
  1996年   51篇
  1995年   33篇
  1994年   25篇
  1993年   25篇
  1992年   15篇
  1991年   12篇
  1990年   14篇
  1989年   16篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1981年   9篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1973年   5篇
  1972年   7篇
  1971年   6篇
排序方式: 共有5206条查询结果,搜索用时 22 毫秒
121.
This work was conducted to determine the practicability of using a new adsorbent 4-ethyl thiosemicarbazide intercalated,organophilic calcined hydrotalcite(ETSC-OHTC) for the removal of uranium(U(VI)),and thorium(Th(IV)) from water and wastewater.The FTIR analysis helped in realizing the involvement of nitrogen and sulphur atoms of ETSC in binding the metal ions through complex formation.Parameters like adsorbent dosage,solution pH,initial metal ions concentration,contact time and ionic strength,that influence adsorption phenomenon,were studied.The optimum pH for maximum adsorption of U(VI) and Th(IV) was found to be in the range 4.0-6.0.The contact time required for reaching equilibrium was 4 hr.The pseudo second-order kinetic model was the best fit to represent the kinetic data.Analysis of the equilibrium adsorption data using Langmuir,Freundlich and Sips models showed that the Freundlich model was well suited to describe the metal ions adsorption.The K F values were 25.43 and 29.11mg/g for U(VI) and Th(IV),respectively,at 30°C.The adsorbent can be regenerated effectively from U(VI) and Th(IV) loaded ones using 0.01mol/L HCl.The new adsorbent was quite stable for many cycles,without much reduction in its adsorption capacity towards the metals.  相似文献   
122.
The removal efficiency of copper(Cu(Ⅱ)) from an actual acidic electroplating effluent by biochars generated from canola,rice,soybean and peanut straws was investigated.The biochars simultaneously removed Cu(Ⅱ) from the effluent,mainly through the mechanisms of adsorption and precipitation,and neutralized its acidity.The removal efficiency of Cu(Ⅱ) by the biochars followed the order:peanut straw char > soybean straw char > canola straw char > rice straw char a commercial activated carbonaceous material,which is consistent with the alkalinity of the biochars.The pH of the effluent was a key factor determining the removal efficiency of Cu(Ⅱ) by biochars.Raising the initial pH of the effluent enhanced the removal of Cu(Ⅱ) from it.The optimum pyrolysis temperature was 400°C for producing biochar from crop straws for acidic wastewater treatment,and the optimum reaction time was 8 hr.  相似文献   
123.
Bamboo charcoal(BC) was used as starting material to prepare iron-modified bamboo charcoal(Fe-MBC) by its impregnation in FeCl 3 and HNO 3 solutions simultaneously,followed by microwave heating.The material can be used as an adsorbent for Pb(Ⅱ) contaminants removal in water.The composites were prepared with Fe molar concentration of 0.5,1.0 and 2.0 mol/L and characterized by means of N 2 adsorption-desorption isotherms,X-ray diffraction spectroscopy(XRD),scanning electron microscopy coupled with energy dispersive X-ray spectrometry(SEM-EDS),Fourier transform infrared(FT-IR) and point of zero charge(pH pzc) measurements.Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation.The adsorbent with Fe molar concentration of 2 mol/L(2Fe-MBC) exhibited the highest surface area and produced the best pore structure.The Pb(Ⅱ) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(Ⅱ).The adsorption of Pb(Ⅱ) strongly depended on solution pH,with maximum values at pH 5.0.The ionic strength had a significant effect on the adsorption at pH < 6.0.The adsorption isotherms followed the Langmuir isotherm model well,and the maximum adsorption capacity for Pb(Ⅱ) was 200.38 mg/g for 2Fe-MBC.The adsorption processes were well fitted by a pseudo second-order kinetic model.Thermodynamic parameters showed that the adsorption of Pb(Ⅱ) onto Fe-MBC was feasible,spontaneous,and exothermic under the studied conditions,and the ion exchange mechanism played an significant role.These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(Ⅱ) from wastewater.  相似文献   
124.
The adsorption behavior of 2-mercaptobenzothiazole onto organo-bentonite was investigated.Natural bentonite from Gaozhou in Guangdong Province,China was collected.Organo-bentonite was prepared by intercalation of cetyltrimethyl ammonium bromide into the natural bentonite.The physicochemical properties of the prepared organo-bentonite were characterized by X-ray diffraction,N2 adsorption-desorption isotherm and Fourier transform infrared spectroscopy.The results showed that montmorillonite is the main component of the natural bentonite.The basal spacing of the natural bentonite is 1.47 nm,which increased to 1.98 nm on intercalation with cetyltrimethyl ammonium bromide.Moreover,both the surface area and pore volume increased with intercalation.Clear CH2 stretching(3000-2800 cm-1) and scissoring(1480-1450 cm-1) modes of the intercalated surfactants were observed for organobentonite.Compared with the pseudo first-order kinetic model,the pseudo second-order kinetic model is more suitable to describe the adsorption kinetics of 2-mercaptobenzothiazole onto organo-bentonite.The adsorption capacity of 2-mercaptobenzothiazole onto organo-bentonite increased with increasing initial concentration of 2-mercaptobenzothiazole,but decreased with increasing adsorbent dosage.The adsorption isotherm of 2-mercaptobenzothiazole onto organo-bentonite fits well with the Langmuir model.The maximum adsorption capacity of organo-bentonite for 2-mercaptobenzothiazole was 33.61 mg/g,indicating that organo-bentonite is a promising adsorbent for 2-mercaptobenzothiazole.  相似文献   
125.
The development of low-cost and efficient new mineral adsorbents has been a hot topic in recent years. In this study, Friedel’s salt (FS:3CaO·A12O3 ·CaCl2 ·10H2O), a hexagonal layered inorganic absorbent, was synthesized to remove Cd2+ from water. The adsorption process was simulated by Langmuir and Freundlich models. The adsorption mechanism was further analyzed with TEM, XRD, FT-IR analysis and monitoring of metal cations released and solution pH variation. The results indicated the adsorbent FS had an outstanding ability for Cd(Ⅱ) adsorption. The maximum adsorption capacity of the FS for Cd(Ⅱ) removal can reach up to 671.14 mg/g. The nearly equal numbers of Cd2+ adsorbed and Ca2+ released demonstrated that ion-exchange (both surface and inner) of the FS for Cd(Ⅱ) played an important role during the adsorption process. Furthermore, the surface of the FS after adsorption was microscopically disintegrated while the inner lamellar structure was almost unchanged. The behavior of Cd(Ⅱ) adsorption by FS was significantly affected by surface reactions. The mechanisms of Cd2+ adsorption by the FS mainly included surface complexation and surface precipitation. In the present study, the adsorption process was fitted better by the Langmuir isotherm model (R2 = 0.9999) than the Freundlich isotherm model (R2 = 0.8122). Finally, due to the high capacity for ion-exchange on the FS surface, FS is a promising layered inorganic adsorbent for the removal of Cd(Ⅱ) from water.  相似文献   
126.
Humic acid superabsorbent polymer (P(AA/AM-HA)) and superabsorbent polymer (P(AA/AM)) were synthesized by aqueous solution polymerization method using acrylic acid (AA), acrylamide (AM) and humic acid (HA) as raw material. The effects of N,N'-methylenebisacrylamide (MBA) crosslinking agent, potassium peroxydisulfate (KPS) initiator, reaction temperature, HA content, ratio of AA to AM, concentration of monomer and neutralization of AA on water absorption were investigated. Absorption and desorption ratios of nitrogen fertilizer and phosphate fertilizer were also investigated by determination of absorption and desorption ratio of NH4+, PO43- on P(AA/AM-HA) and P(AA/AM). The P(AA/AM-HA) and P(AA/AM) were characterized by Fourier translation infrared spectroscopy, biological photomicroscope and scanning electron microscopy (SEM). The optimal conditions obtained were as follows: the weight ratio of MBA to AA and AM was 0.003; the weight ratio of KPS to AA and AM was 0.008; the weight ratio of HA to AA was 0.1; the mole ratio of AM to AA is 0.1; the mole ratio of NaOH to AA is 0.9; the reaction temperature was 60℃. P(AA/AMHA) synthesized under optimal conditions, has a good saline tolerance, its water absorbency in distilled water and 0.9 wt.% saline solution is 1180 g/g and 110 g/g, respectively. P(AA/AM-HA) achieves half saturation in 6.5 min. P(AA/AM-HA) is superior to P(AA/AM) on absorption of NH4+, PO43-. The SEM micrograph of P(AA/AM-HA) shows a fine alveolate structure. The biological optical microscope micrograph of P(AA/AM-HA) shows a network structure. Graft polymerization between P(AA/AM) and HA was demonstrated by infrared spectrum. The P(AA/AM-HA) superabsorbent has better absorbing ability of water and fertilizer, electrolytic tolerance and fewer cost than P(AA/AM) superabsorbent.  相似文献   
127.
Cr(Ⅲ) adsorption by biochars generated from peanut, soybean, canola and rice straws is investigated with batch methods. Adsorption of Cr(Ⅲ) increased as pH rose from 2.5 to 5.0. Adsorption of Cr(Ⅲ) led to peak position shifts in the FFIR-PAS spectra of the biochars and made zeta potential values less negative, suggesting the formation of surface complexes between Cr^3+ and functional groups on the biochars. The adsorption capacity of Cr(Ⅲ) followed the order: peanut straw char 〉 soybean straw char 〉 canola straw char 〉 rice straw char, which was consistent with the content of acidic functional groups on the biochars. The increase in Cr^3+ hydrolysis as the pH rose was one of the main reasons for the increased adsorption of Cr(Ⅲ) by the biochars at higher pH values. Cr(llI) can be adsorbed by the biochars through electrostatic attraction between negative surfaces and Cr^3+, but the relative contribution of electrostatic adsorption was less than 5%. Therefore, Cr(Ⅲ) was mainly adsorbed by the biochars through specific adsorption. The Langumir and Freundlich equations fitted the adsorption isotherms well and can therefore be used to describe the adsorption behavior of Cr(Ⅲ) by the crop straw biochars. The crop straw biochars have great adsorption capacities for Cr(Ⅲ) under acidic conditions and can be used as adsorbents to remove Cr(Ⅲ) from acidic wastewaters.  相似文献   
128.
介绍了采用溶胶凝胶法合成新型的复合材料-磁性的γ-Fe_2O_3膨胀石墨(MEG)复合材料。通过采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X-光电子能谱仪(XPS)对该复合材料MEG进行了表征,结果表明MEG中γ一Fe_2O_3的粒径约为50nm,而且其中γ一Fe_2O_3和膨胀石墨通过C=O相互作用。复合材料MEG作为新型的六价铬吸附剂,通过吸附时间、初始溶液的pH值以及再生性对该吸附过程进行了考察。结果表明:在40 min内MEG吸附六价铬的过程基本达到平衡;在初始溶液的pH为3.5时,MEG对六价铬的最大吸附量可以达到16.4mg/g;而且该复合材料MEG重复使用3次后吸附效果基本没有下降。因此,复合材料MEG对于废水中六价铬的处理有选择性吸附作用,而且初始溶液的pH值对其吸附过程起着重要作用。  相似文献   
129.
介绍了活性炭吸附法油气回收系统在成品油库汽油装车过程中的应用情况。结合油库油气回收改造的实际情况,重点介绍了了吸附法油气回收装置的工艺流程、油库油气回收系统的组成、监控系统主要功能、环保检测的相关事项,并分析了油气回收系统的经济效益,结合实际经验对油库油气回收改造提出了建议。  相似文献   
130.
新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除   总被引:2,自引:1,他引:1  
德岛大学安澤幹人首次利用γ-PGA在Fe3O4磁性纳米颗粒上进行涂层,制得了γ-聚谷氨酸-Fe3O4磁性纳米颗粒(PG-M).本实验利用透射电镜以及扫描电镜对PG-M吸附剂的形貌进行了分析,发现PG-M与未涂层的Fe3 O4具有相似的形状以及大小,均为不规则的层状结构,且晶粒直径在120~320 nm之间;实验中针对性地对水溶液中Pb2+进行了吸附探讨.在振荡实验中,通过主要参数的变化(pH值、吸附时间、竞争离子浓度、腐殖酸浓度),得到如下结果:吸附最佳pH值为7.0;吸附量随着吸附时间的延长而增长,吸附平衡时间为45 min;Na+对PG-M去除Pb2+没有很强的干扰性,而Ca2+则显示出一定的干扰作用;腐殖酸对吸附效果的影响是复杂的,表现为先增强吸附效果,随后降低吸附效果;最佳条件时Pb2+的最大吸附量为93.3 mg/g.PG-M对Pb2+的吸附均能较好地符合Freundlich和Langmuir等温吸附模型,其中Langmuir方程能更好地描述PG-M的吸附特征,说明PG-M在水溶液中对金属离子的吸附为单分子层吸附.PG-M吸附符合准二级动力学模型(r2〉0.99).不同浓度的HCl和HNO3溶液的再生实验发现,0.1 mol/L的HCl溶液作为吸附再生液,可取得较好的再生效果.表明PG-M是可再生的,具有较好的经济性和可持续性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号