全文获取类型
收费全文 | 78篇 |
免费 | 13篇 |
国内免费 | 123篇 |
专业分类
安全科学 | 2篇 |
废物处理 | 1篇 |
环保管理 | 3篇 |
综合类 | 152篇 |
基础理论 | 15篇 |
污染及防治 | 39篇 |
评价与监测 | 2篇 |
出版年
2024年 | 1篇 |
2023年 | 5篇 |
2022年 | 17篇 |
2021年 | 13篇 |
2020年 | 14篇 |
2019年 | 20篇 |
2018年 | 15篇 |
2017年 | 16篇 |
2016年 | 11篇 |
2015年 | 10篇 |
2014年 | 8篇 |
2013年 | 14篇 |
2012年 | 6篇 |
2011年 | 8篇 |
2010年 | 10篇 |
2009年 | 13篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 5篇 |
2005年 | 1篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有214条查询结果,搜索用时 15 毫秒
101.
采用14C-CO2(碳同位素)连续标记技术结合室内模拟培养试验,采用土壤有机质的物理、化学分组方法,研究了不同种植方式〔P-R(盘塘水稻土)、P-U(盘塘水旱轮作土)和U-C(盘塘坡旱土)〕下14C-SOC(自养微生物同化碳)在土壤腐殖质组分和团聚体中的分配特征. 结果表明:不同种植方式显著影响自养微生物的固碳能力,P-R的自养微生物固碳能力最强〔w(14C-SOC)为38.32 mg/kg〕,约为P-U和U-C的2倍;P-R和P-U中w(14C-DOC)、w(14C-MBC)显著大于U-C中. 14C-SOC不同程度地进入了土壤的3种腐殖质组分(胡敏素、胡敏酸、富啡酸)中,其中进入胡敏素中的14C-SOC占总量的67.7%. 14C-SOC亦进入了不同粒径的土壤团聚体中,其中主要进入了Ⅲ级(0.020 mm≤粒径<0.200 mm)和Ⅱ级(0.200 mm≤粒径<2.000 mm)粒径的大团聚体中,表现出了碳汇效应;不同种植方式的土壤中,以P-R土壤各粒径土壤团聚体中w(14C-SOC)最高. 相关分析表明,全土中的w(14C-SOC)与各粒径土壤团聚体中w(14C-SOC)和胡敏酸中w(14C-SOC)均呈显著正相关. 相似文献
102.
利用微生物燃料电池(Microbial fuel cell,MFC)装置耦合零价铁脱氮和生物阴极,研发基于铁阳极的新型生物脱氮技术,可有效避免脱氮过程中外源有机物的添加,降低污水处理成本,减少二次污染.本文以MFC装置为平台,零价铁为阳极,附着生物膜的碳刷为阴极,组成零价铁自养反硝化装置.在控制变量的条件下,采用单因素试验法探究不同起始pH(5~9)、不同外接电阻(50~2000Ω)、不同阴极电导率(0~232g·L-1)和不同起始基质浓度(42~800 mg·L-1)对零价铁自养反硝化效能和MFC产电性能的影响.结果表明,以脱氮作为首要目标,产电作为次要目标时,零价铁生物自养反硝化体系最佳起始pH为7,最佳起始硝氮浓度为200 mg·L-1,最佳阴极电导率为添加116 g·L-1,最佳外接电阻为1000Ω.对自养反硝化效能影响因素的探究将有助于优化反应条件,探明碳阴极生物脱氮过程的主要干扰因素,提升生物自养反硝化技术效能. 相似文献
103.
稻田土壤固碳功能微生物群落结构和数量特征 总被引:6,自引:4,他引:6
研究不同类型稻田土壤自养微生物数量和多样性差异及其影响因子,对全面认识稻田生态系统的固碳潜力及其机制具有重要意义.鉴于此,本文选取4种典型稻田土壤,通过室内培养实验对具备卡尔文循环途径碳同化微生物进行了研究.利用荧光定量PCR(qPCR)、克隆文库以及末端限制性长度多态性分析(T-RFLP)技术,研究了卡尔文循环关键酶(1,5二磷酸核酮糖羧化酶/加氧酶Rubis CO)的2种编码基因(cbbL和cbbM)的丰度和多样性.结果表明,与培养前相比,培养45 d后碳同化自养微生物数量有所增加,cbbL基因丰度比cbbM基因高3个数量级.不同稻田土壤中碳同化功能微生物优势种群存在差异,且这些微生物大多不能归类到已知的细菌类群中,部分可归类的与变形菌和放线菌有较高相似度.RDA分析结果显示土壤有机碳(SOC)、阳离子交换量(CEC)、pH、黏粒、粉粒和砂粒含量对碳同化功能微生物群落结构有显著影响.本文的研究结果对于理解微生物在碳循环过程中的作用具有一定的科学意义,也可以为稻田土壤肥力科学化管理和构建低碳农业提供科学依据. 相似文献
104.
通过连续实验和间歇实验研究了不同曝气量对SBR系统自养脱氮性能的影响。连续实验表明,在进水氨氮浓度为155~185 mg/L时,曝气量分别为20、28、36和44 L/h时,TN去除率分别为80%、82%、80%和77%;增大和减小曝气量均会降低系统的脱氮效率。间歇实验表明,随着曝气量的增加,氨氮的降解速率有所升高,20、28、36和44 L/h曝气条件下氨氮的降解速率分别为7.23、7.25、7.86和7.95 mg/(g MLVSS.h);在降解的过程中DO浓度一直维持在较低的水平(<0.5 mg/L),pH值则呈先升高后降低的趋势;氨氮降解结束时,pH值和DO浓度同时升高。结果表明,改变曝气量会影响单级自养脱氮反应的进程,但对降解过程DO浓度值变化不大;DO浓度和pH值变化对氨降解结束具有指示作用。 相似文献
105.
为将部分亚硝化-厌氧氨氧化技术(PN/A)应用于高浓度氨氮废水的处理,本研究以经破碎后的全自养脱氮颗粒污泥为种污泥,通过协同控制进水氨氮负荷(NLR)、各格室溶解氧(DO)水平和游离氨(FA)浓度等参数,在106 d内成功启动了三级连续流反应器.结果表明,颗粒污泥在启动初期呈现明显的亚硝化功能.反应器采用高NLR和限制曝气的控制策略,能够有效控制亚硝酸氧化菌增殖,并避免DO对厌氧氨氧化菌的抑制作用,有利于颗粒密实度和脱氮活性的提升.当进水氨氮浓度升至350 mg·L-1时,通过调节进水p H和碱度投加量,可以消除前端格室内高FA浓度对功能菌活性的不利影响.反应器最终实现了7. 2 kg·(m~3·d)-1的总氮去除负荷,较传统活性污泥法高出50~100倍.模拟不同曝气强度的序批次实验也证明,各格室污泥的脱氮活性持续增强,且格室1中颗粒污泥的成熟度最高.期间,胞外聚合物含量与比总氮去除速率呈现良好的线性相关(R2 0. 97),这意味着颗粒密实度的改善对提升反应器性能具有积极意义. 相似文献
106.
采用含硫铁化学污泥作为反硝化电子供体进行焦化废水中总氮深度去除 总被引:2,自引:3,他引:2
城市污水处理和大部分的工业废水处理工艺的出水总氮普遍难以达标排放,基于进水水质的C/N值不稳定、提高回流比造成水力负荷增大、降低反应动力学并且耗能、投加有机碳源带来二次污染以及高污泥产率等问题,急需寻求一种节能降耗、操作简单的深度脱氮方法.对此,利用含硫工业废水预处理产生的含硫铁化学污泥作为固相电子供体进行自养反硝化深度脱氮,实验过程中,以焦化废水二级生物出水作为研究对象,考察脱氮性能、硫铁泥转变过程及微生物群落变化,求出废水深度脱氮新工艺的优化反应条件与效果范围.当进水NO_3~--N、NO_2~--N浓度分别是(74.54±0.57)mg·L~(-1)、(1.11±0.19)mg·L~(-1),水力停留时间为18 h时,对应出水浓度分别降低至(2.78±1.08)mg·L~(-1)、(2.87±0.71)mg·L~(-1);TON(NO_3~--N+NO_2~--N)去除率高达90.0%;NO_3~--N还原速率和NO_2~--N累积速率分别为12.06 mmol·(L·d)-1、7.74 mmol·(L·d)-1.结果表明,以副产物化学硫铁泥作为电子供体深度脱氮有潜在的工程应用价值,以水处理工艺过程中原位利用废物,解决部分富硫铁化学污泥后续处理问题,表现出资源化利用的综合特征. 相似文献
107.
本研究分别启动了厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)和部分亚硝化-厌氧氨氧化反应器(Partial Nitrification/Anammox, PN/A),两者达到稳态后耦合为"AnMBR+PN/Anammox"新系统,实现前段有机质甲烷化、后段自养脱氮的污水处理目的.耦合系统运行结果表明:化学需氧量(chemical oxygen demand, COD)在AnMBR的去除率为96%,其中80.3%的COD在此段转化为CH_4,Anammox内一定的反硝化作用进一步强化了COD去除,系统COD总去除率达97%以上;氮污染物经AnMBR处理后均以NH~+_4-N形态存在,再经PN/A处理后,总氮(total nitrogen, TN)平均去除率达78%;系统出水COD和TN值分别低于13和11 mg·L~(-1).因此,AnMBR-Anammox耦合系统在同步实现污水甲烷回收、自养脱氮、低碳氮排放方面具有显著优势,本研究结果为开发AnMBR-Anammox耦合新工艺提供了理论依据. 相似文献
108.
针对厌氧氨氧化工艺启动速度慢及在垃圾渗滤液中脱氮效率低的问题,探究了厌氧氨氧化工艺在处理高氨氮、低C/N比垃圾渗滤液中的快速启动及稳定运行策略。结果表明,厌氧氨氧化工艺接种反硝化污泥:anammox颗粒污泥=9:1的启动效果最佳,100 d时TN去除率可达75.1%。但由于垃圾渗滤液中COD较高,异养反硝化菌生长迅速且严重影响厌氧氨氧化菌活性。通过投加6 mg·L−1的N2H4之后,异养反硝化菌活性受到抑制,反应器内厌氧氨氧菌占据主导地位,Candidatus Kuenenia菌相对丰度由0.2%提升到10.6%,TN去除率及氮去除速率分别达90.6%和0.143 kg·(kg·d)−1以上。在厌氧氨氧化工艺中投加适量N2H4可实现垃圾渗滤液的稳定高效自养脱氮。 相似文献
109.
亚硝化/电化学生物反硝化全自养脱氮工艺研究 总被引:6,自引:0,他引:6
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1. 相似文献
110.
为了研究硫自养反硝化处理高含氟光伏废水的可行性,室温(20~25℃)下,采用驯化后的硫自养反硝化生物膜反应器,探究了不同进水F-浓度对硫自养反硝化脱氮效能的影响.结果表明,当进水F-浓度为0~700 mg·L~(-1)时,随着F-浓度的提升,反应器的脱氮效能逐渐提升,且当F-浓度为700 mg·L~(-1)时,可获最大TN去除速率1.0 kg·(m3·d)-1.当进水F-浓度在700~900 mg·L~(-1)时,经短期驯化,TN去除速率可稳定在0.81~0.87 kg·(m~3·d)~(-1).当进水F-浓度提升至900 mg·L~(-1)以上时,反应器的TN去除速率随进水F-浓度的提升而下降,最低至0.4~0.5 kg·(m~3·d)~(-1).以光伏废水为研究对象,在进水F-浓度为800 mg·L~(-1)左右,进水NO_3~--N浓度为390~420 mg·L~(-1),HRT为8.8 h的条件下,经50 d运行后,获得稳定的脱氮效能,TN去除速率为1.1 kg·(m~3·d)~(-1),出水TN为15~25 mg·L~(-1),达到污水接管排放标准.采用传统反硝化工艺和硫自养反硝化工艺脱氮处理光伏废水的成本分别为2.468元·t~(-1)和2.072 8元·t~(-1),硫自养反硝化工艺更节约脱氮处理成本. 相似文献