首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   94篇
  国内免费   425篇
安全科学   58篇
废物处理   10篇
环保管理   166篇
综合类   718篇
基础理论   117篇
污染及防治   202篇
评价与监测   38篇
社会与环境   14篇
灾害及防治   29篇
  2024年   1篇
  2023年   7篇
  2022年   22篇
  2021年   32篇
  2020年   27篇
  2019年   23篇
  2018年   27篇
  2017年   42篇
  2016年   58篇
  2015年   46篇
  2014年   62篇
  2013年   87篇
  2012年   98篇
  2011年   101篇
  2010年   81篇
  2009年   80篇
  2008年   68篇
  2007年   74篇
  2006年   122篇
  2005年   41篇
  2004年   44篇
  2003年   41篇
  2002年   33篇
  2001年   20篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   11篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1352条查询结果,搜索用时 31 毫秒
81.
ABSTRACT: First order drainage channels originate when the tractive force exerted by flowing water is sufficient to move surface sediment. The amount of runoff available to move sediment is a function of geologic and climatic characteristics. An experimental analysis showed that soils derived from fine grained rocks had lower infiltration rates and higher runoff volume than soils derived from coarser grained rocks in a semi-arid climate. Root density and penetration increased in a more humid climate and increased infiltration rates. The number of first order channels was inversely proportional to the infiltration capacity of the soil. Each first order channel acts as a source area for surface runoff. The distribution of first order channel distances from the gage determines the timing of the delivery of water to the gage. A comparison of the frequency histogram of first order channel distances for drainage basins in Pennsylvania and their hydxographs of runoff from general storms showed marked similarity. This close correspondence indicated the shape of the surface runoff hydrograph and was largely controlled by the distribution of first order channel distances.  相似文献   
82.
ABSTRACT: Wastewater from a municipal treatment plant was applied in rapid infiltration basins for four years to determine a poorly drained soils effectiveness in removing influent N and P and the soil changes that might limit their removal. About half the total PO4-P lost from the influent was sorbed in the upper 91 cm of the soil and the other half was sorbed by the soil below the perforated pipe, which was used to drain the basins and collect the effluent for analysis. Drying of the basin soils converted more sorbed PO4-P to Ca phosphates but the total sorbed was about the same. The in. fluent N decreased, probably by volatilization, because the two basins with surface soil lost soil N rather than gained soil N. The soil total Ca, Mg, and K contents did not change significantly but Na increased slightly. Changes in the physical characteristics of the soils were slight and would have little effect on the longevity of a rapid infiltration basin.  相似文献   
83.
ABSTRACT: Few studies have been conducted to explore the effects of initial abstraction on estimated direct runoff despite the widespread use of the curve number (CN) method in many hydrologic models to estimate direct runoff. In this study, use of a 5 percent ratio of initial abstraction (Ia) to storage (S) to estimate daily direct runoff with modified CN values for a 5 percent Ia/S value was investigated using the Long‐Term Hydrologic Impact Assessment (L‐THIA) geographic information system (GIS). In addition, the effects on estimated runoff of altering the hydrologic soil group due to urbanization were investigated. The L‐THIA model was applied to the Indiana Little Eagle Creek watershed with 5 percent and 20 percent Ia/S values, considering hydrologic soil group alteration due to urbanization. The results indicate that uses of a 5 percent la/S and modified CN values and Hydrologic Soil Group D for urbanized areas in model runs can improve long term direct runoff prediction.  相似文献   
84.
ABSTRACT: The goal of this research was to develop a methodology for modeling a bioinfiltration best management practice (BMP) built in a dormitory area on the campus of Villanova University in Pennsylvania. The objectives were to quantify the behavior of the BMP through the different seasons and rainfall events; better understand the physical processes governing the system's behavior; and develop design criteria. The BMP was constructed in 2001 by excavating within an existing traffic island, backfilling with a sand/soil mixture, and planting with salt tolerant grasses and shrubs native to the Atlantic shore. It receives runoff from the asphalt (0.26 hectare) and turf (0.27 hectare) surfaces of the watershed. Monitoring supported by the hydrologic model shows that the facility infiltrates a significant fraction of the annual precipitation, substantially reducing the delivery of nonpoint source pollution and erosive surges downstream. A hydrologic model was developed using HEC‐HMS to represent the site and the BMP using Green‐Ampt and kinematic wave methods. Instruments allow comparison of the modeled and measured water budget parameters. The model, incorporating seasonally variable parameters, predicts the volumes infiltrated and bypassed by the BMP, confirming the applicability of the selected methods for the analysis of bioinfiltration BMPs.  相似文献   
85.
ABSTRACT: In this paper a new set of soil texture data is used to estimate the spatial distribution of saturated hydraulic conductivity values for a small rangeland catchment. The estimates of conductivity are used to re-excite and re-evaluate a quasi-physically based rainfall-runoff model. The performance of the model is significantly reduced with conductivity estimates gleaned from soil texture data rather than the infiltration data used in our previous efforts.  相似文献   
86.
ABSTRACT: Infiltration trenches are an effective stormwater management alternative for the control of urban runoff from small areas. Perforated pipes buried within the gravel of an infiltration trench are used to distribute the inflowing runoff along the length of the trench. Laboratory tests are described that characterize the hydraulics of the orifices in perforated pipes. The results show that the steady-state exfiltration of water from the pipe into a surrounding gravel trench can be described by the orifice equation.  相似文献   
87.
ABSTRACT: Many hydrologic models have input data requirements that are difficult to satisfy for all but a few well-instrumented, experimental watersheds. In this study, point soil moisture in a mountain watershed with various types of vegetative cover was modeled using a generalized regression model. Information on sur-ficial characteristics of the watershed was obtained by applying fuzzy set theory to a database consisting of only satellite and a digital elevation model (DEM). The fuzzy-c algorithm separated the watershed into distinguishable classes and provided regression coefficients for each ground pixel. The regression model used the coefficients to estimate distributed soil moisture over the entire watershed. A soil moisture accounting model was used to resolve temporal differences between measurements at prototypical measurement sites and validation sites. The results were reasonably accurate for all classes in the watershed. The spatial distribution of soil moisture estimates corresponded accurately with soil moisture measurements at validation sites on the watershed. It was concluded that use of the regression model to distribute soil moisture from a specified number of points can be combined with satellite and DEM information to provide a reasonable estimation of the spatial distribution of soil moisture for a watershed.  相似文献   
88.
ABSTRACT: Most water-resouree investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature th determine energy and moisture balances, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.  相似文献   
89.
Predicting mass rapid transit noise levels on an elevated station   总被引:4,自引:0,他引:4  
This study developed a noise prediction model for elevated mass rapid transit (MRT) platforms. Relevant physical and operational parameters (e.g. cruise speed, acceleration and deceleration rates for trains, building fa?ade setbacks and so on) were collected from the Bangkok mass transit system (BTS), the first elevated MRT system operated in Bangkok, Thailand. The equivalent continuous sound pressure levels (L(Aeq)) were collected from both sides of the MRT stations at the center of each platform. The relevant parameters were collected on both platforms and ground level, on both sides of MRT stations. These parameters were statistically tested to determine their correlation with MRT noise. The final model was built from highly correlated parameters using multiple regression analysis with a stepwise regression technique. Statistical evaluation showed a high degree of goodness-of-fit test for the model to the observed data. Therefore, it can be efficiently used for the projection of MRT noise in the affected areas.  相似文献   
90.
我国地震应急指挥技术体系初探   总被引:41,自引:4,他引:37  
地震应急指挥技术系统是防震减灾建设的核心内容。”十五”期间,将建设中国地震应急指挥技术系统。目前我国在这方面的研究和建设尚处于初级阶段,其体系结构,关键构成、设计和实现还有许多问题值得进一步研究和探讨。根据所从事的项目建设过程,对地震应急指挥技术系统的体系结构进行了阐述,介绍了在此基础上开展的首都圈地震应急指挥系统建设工作,并就今后的发展进行了讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号