首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   9篇
  国内免费   20篇
废物处理   2篇
环保管理   125篇
综合类   56篇
基础理论   64篇
污染及防治   27篇
评价与监测   17篇
社会与环境   39篇
  2023年   6篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   17篇
  2008年   12篇
  2007年   14篇
  2006年   19篇
  2005年   10篇
  2004年   18篇
  2003年   13篇
  2002年   19篇
  2001年   25篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
321.
Abstract:  Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.  相似文献   
322.
Understanding the environmental consequences of changing water regimes is a daunting challenge for both resource managers and ecologists. Balancing human demands for fresh water with the needs of the environment for water in appropriate amounts and at the appropriate times are shaping the ways by which this natural resource will be used in the future. Based on past decisions that have rendered many freshwater resources unsuitable for use, we argue that river systems have a fundamental need for appropriate amounts and timing of water to maintain their biophysical integrity. Biophysical integrity is fundamental for the formulation of future sustainable management strategies. This article addresses three basic ecological principles driving the biogeochemical cycle of nitrogen in river systems. These are (1) how the mode of nitrogen delivery affects river ecosystem functioning, (2) how increasing contact between water and soil or sediment increases nitrogen retention and processing, and (3) the role of floods and droughts as important natural events that strongly influence pathways of nitrogen cycling in fluvial systems. New challenges related to the cumulative impact of water regime change, the scale of appraisal of these impacts, and the determination of the impacts due to natural and human changes are discussed. It is suggested that cost of long-term and long-distance cumulative impacts of hydrological changes should be evaluated against short-term economic benefits to determine the real environmental costs.  相似文献   
323.
Changes in the abundance, species composition, and biomorphological structure of the carabid fauna were studied in birch and fir–spruce forests growing in a zone exposed to emissions from a copper-smelting plant in the Middle Urals. The dynamic density of carabids decreased and their species composition and the ratio of life forms changed along the pollution gradient, but the principle of organization of carabidocenoses and the structure of dominance in them remained undisturbed.  相似文献   
324.
The Southeastern United States is a global center of freshwater biotic diversity, but much of the regions aquatic biodiversity is at risk from stream degradation. Nonpoint pollution sources are responsible for 70% of that degradation, and controlling nonpoint pollution from agriculture, urbanization, and silviculture is considered critical to maintaining water quality and aquatic biodiversity in the Southeast. We used an ecological risk assessment framework to develop vulnerability models that can help policymakers and natural resource managers understand the impact of land cover changes on water quality in North Carolina. Additionally, we determined which landscape characteristics are most closely associated with macroinvertebrate community tolerance of stream degradation, and therefore with lower-quality water. The results will allow managers and policymakers to weigh the risks of management and policy decisions to a given watershed or set of watersheds, including whether streamside buffer protection zones are ecologically effective in achieving water quality standards. Regression analyses revealed that landscape variables explained up to 56.3% of the variability in benthic macroinvertebrate index scores. The resulting vulnerability models indicate that North Carolina watersheds with less forest cover are at most risk for degraded water quality and steam habitat conditions. The importance of forest cover, at both the watershed and riparian zone scale, in predicting macrobenthic invertebrate community assemblage varies by geographic region of the state.  相似文献   
325.
ABSTRACT: The pressure on water resources from energy resource development and transformation is likely to be greater in the future than it has been in the past. A rational resolution of the political problems that this situation will generate requires that: 1) planning based on predictions of future energy supply and demand be replaced by scenario, or “what if?” analysis; 2) full attention be paid to the uncertainties in per-unit-energy water requirements; 3) suitable stochastic measures of water availability be used to compare water supply with water demand; 4) realistic ecological criteria, and other alternative use criteria, be developed for estimating impacts of water withdrawn or consurned for energy development; 5) human consequences of ecological impaccts are described in a manner that will allow the political process to intervene in an optimum manner to allocate water resources.  相似文献   
326.
The data presented were obtained at the first stage (1993–1999) of studies on evaluating the basic parameters of biological production in Russian terrestrial ecosystems in order to provide information for assessing and modeling the carbon budget of the entire terrestrial biota of the country. Stocks of phytomass (by fractions), coarse woody debris, and dead roots (underground necromass) were calculated by two independent methods, which yielded close results. The total amount of phytomass in Russian terrestrial ecosystems was estimated at 81800 Tg (=1012 g = million t) dry matter, or 39989 Tg carbon. Forest ecosystems comprise a greater part (82.1%) of live plant organic matter (here and below, comparisons are made with respect to the carbon content); natural grasslands and brushwoods account for 8.8%; the phytomass of wetlands (bogs and swamps), for 6.6%; and the phytomass of farmlands, for only 2.5%. Aboveground wood contains approximately two-thirds of the plant carbon (63.8%), and green parts contain 9.9%. For all classes of ecosystems, the proportion of underground phytomass averages 26.7% of the total amount, varying from 22.0% in forests to 57.1% in grasslands and brushwoods. The average phytomass density on lands covered with vegetation (1629.9 million hectares in Russia) is 5.02 kg/m2 dry matter, or 2.45 kg C/m2. The total amount of carbon in coarse woody debris is 4955 Tg C, and 9180 Tg C are in the underground necromass. In total, the vegetation of Russian terrestrial ecosystems (without litter) contains 54124 Tg carbon.  相似文献   
327.
Production and emission of phosphine gas from wetland ecosystems   总被引:2,自引:1,他引:1  
Phosphine is a part of an atmospheric link of phosphorus cycle on earth, which could be an important pathway for phosphorus transport in environment.Wetland ecosystems are important locations for global biogeochemical phosphorus cycle.In this study, production and emission fluxes of free phosphine from four wetlands types in southern China were observed in different seasons.The results showed that the concentration of phosphine liberated from wetlands was at pg/m3-ng/m3 level.The emission concentrations of different wetlands followed the sequence:paddy field(51.83 ± 3.06) ng/m3 marsh(46.54 ± 20.55) ng/m3 lake(37.05 ± 22.74) ng/m3 coastal wetland(1.71 ± 0.73) ng/m3, the positive phosphine emission flux occurred in rice paddy field(6.67 ± 5.18) ng/(m2·hr) and marsh(6.23 ± 26.9) ng/(m2·hr), while a negative phosphine flux of(-13.11 ± 35.04) ng/(m2·hr) was observed on the water-air interface of Lake Taihu, suggesting that paddy field and marsh may be important sources for phosphine gas in atmosphere, while lake may be a sink of atmospheric phosphine gas during the sampling period.Atmospheric phosphine levels and emission flux from Yancheng marsh and rice paddy field varied in different seasons and vegetational zones.Both diffusion resistance in aqueous phase and temperature were dominating factors for the production and transportation of phosphine to atmosphere.  相似文献   
328.
扬州城市生态系统稳定性分析   总被引:1,自引:1,他引:0  
城市生态系统稳定性直接影响到城市与人类的发展,文章对城市生态系统稳定性概念及表示方法进行了探讨,利用生态系统波动大小与总体发展趋势表示稳定性.并在此基础上从社会-经济-自然复合生态系统角度初步建立城市生态系统稳定性指标体系,利用主成分分析方法对2000-2008年扬州城市生态系统稳定性进行了实例分析评价,结果表明,20...  相似文献   
329.
对土壤有机质的动力学过程的研究是评价区域土壤质量、合理开发利用土壤以及全球碳循环一气候交化研究的基础性工作。系统分析了生态系统转换区土壤有机质动力学特征的δ^13C方法研究的理论基础和应用现状,包括影响土壤有机质δ^13C值的各种内外因素;土壤有机质不同化学组成、不同粒径组分、不同比重组分的δ^13C特征值域;土壤微生...  相似文献   
330.
Impacts of atrazine in aquatic ecosystems   总被引:26,自引:0,他引:26  
A portion of all herbicides applied to forests, croplands, road sides, and gardens are inevitably lost to water bodies either directly through runoff or indirectly by leaching through groundwater into ephemeral streams and lakes. Once in the aquatic environment, herbicides may cause stress within aquatic communities and radically alter community structure. Atrazine is one of the most effective and inexpensive herbicides in the world and is consequently used more frequently than any other herbicide. Atrazine is frequently detected in aquatic waters, and has been known to affect reproduction of aquatic flora and fauna, which in turn impacts on the community structure as a whole. This paper presents a summary of the reported direct and indirect impacts of atrazine on aquatic organisms and community structure. The information can be used for developing improved management guidelines and legislation. It is concluded that a single universal maximum limit on the atrazine application in catchments, as suggested by many regulatory authorities, does not provide adequate protection of the aquatic environment. Rather, it is advocated that flexible limits on the application of atrazine be developed in line with the potential risk of contamination to surface and subsurface water and fragility of the aquatic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号