首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1352篇
  免费   134篇
  国内免费   419篇
安全科学   150篇
废物处理   170篇
环保管理   182篇
综合类   842篇
基础理论   171篇
污染及防治   219篇
评价与监测   40篇
社会与环境   26篇
灾害及防治   105篇
  2024年   3篇
  2023年   17篇
  2022年   43篇
  2021年   57篇
  2020年   53篇
  2019年   42篇
  2018年   60篇
  2017年   62篇
  2016年   65篇
  2015年   67篇
  2014年   135篇
  2013年   141篇
  2012年   115篇
  2011年   130篇
  2010年   98篇
  2009年   82篇
  2008年   71篇
  2007年   102篇
  2006年   106篇
  2005年   60篇
  2004年   50篇
  2003年   52篇
  2002年   54篇
  2001年   40篇
  2000年   39篇
  1999年   29篇
  1998年   20篇
  1997年   20篇
  1996年   26篇
  1995年   20篇
  1994年   10篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有1905条查询结果,搜索用时 468 毫秒
531.
重金属对2-氯酚厌氧降解及微生态结构的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了Cu2+、Cd2+、Ni2+对2-氯酚(2-CP)厌氧降解及其微生态结构的影响.结果表明,重金属冲击对连续流厌氧系统具有明显的抑制作用,抑制程度为Cu2+>Ni2+>Cd2+;300mg/L重金属冲击使系统降解率低于30%,需驯化40d左右才能恢复,其中受Ni冲击的体系恢复较快;不同浓度金属离子对2-CP间歇降解系统的抑制作用同样为Cu2+>Niv2+>Cd2+;低浓度重金属离子的驯化能提高污泥对重金属的抗性,驯化后300mg/Lcu2+和Ni2+对降解速率的抑制均降低了45%左右.重金属对厌氧体系的抑制作用和对厌氧污泥微生态结构的影响之间具有很大相关性,厌氧微生态结构受Cu2+冲击后影响最大,受Ni2+影响后恢复最快.  相似文献   
532.
采集了2005年5月16日~6月3日上海市桃浦地区气相样品、TSP样品及不同粒径的颗粒物样品.用GC-MS对各样品中美国EPA规定优先控制的16种多环芳烃(PAHs)做了定量分析.结果表明,大气中PAHs的气固相分配系数(KP)和各物质的过冷饱和蒸气压(pl0)呈良好的线性相关.多元线性回归分析表明,PAHs的气固相分配受颗粒物粒径大小的影响,粒径越大,对PAHs的气固相分配影响越大;过冷饱和蒸气压越高,气固相分配越易受到粒径大小的影响.  相似文献   
533.
本文通过对造纸制浆黑液资源化处理回收木糖粉技术应用的实例分析 ,系统介绍了其技术工艺、设备特点 ,详细分析了它的环境效益和社会效益。本技术对中小型制浆造纸企业治理黑液提供了有益的借鉴  相似文献   
534.
我国南部夏季季风降水水汽来源的稳定同位素证据   总被引:10,自引:1,他引:9  
我国南部地区夏季降水多受季风影响。不同的季风将来自不同通道的水汽带入我国境内,控制降水的时空分布。论文利用CHNIP(中国大气降水同位素网络)中位于南部地区的观测站点,在2005年7月间,收集了月大气降水样及同步观测的气象数据。分析表明,降水中稳定氢氧同位素的空间分布可以很好地示踪和反演该地区夏季季风降水的3个主要水汽来源以及传输路径--体现南亚季风的西南水汽通道、体现南海季风的南海水汽通道及体现副热带季风的东南水汽通道。得到的大气降水线方程:δD=5.15δ18O-15.5反映了我国南部地区的降水过程历经了一定的蒸发。对δ18O与各环境因子的关系进行探讨时发现,δ18O与降雨量和高程存在对数关系,而与温度和相对湿度间存在显著的二次函数关系。综合考虑各环境因子对δ18O的影响,给出多元线性回归方程:δ18O(‰)=0.007H(m)+1.47T(℃)-0.02P(mm)+0.24RH(%)-66.3。  相似文献   
535.
刘圣 《环境工程》2005,23(1):38-40
介绍了 12 5 0 0kVA硅铁电炉除尘工艺、主要设备组成及除尘系统优势 ,并对硅微粉的回收进行了投资分析。  相似文献   
536.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   
537.
On the midnight of July 31st, 2014, a catastrophic vapor explosion occurred in the downtown of Kaohsiung city. The incident was initiated from a leak of an underground pipeline transporting pressurized propylene liquid. Analysis of pipeline operation logs and pipeline break release modeling suggested that at least 90,000 kg of propylene leaked, entered the underground trench and spread into the trench 4.5 km in distance before meeting an ignition source some three hours later after the leak. The ignition caused a significant confined vapor explosion which blew out the road above the underground trench, damaged more than one hundred vehicles on the road with thirty two fatalities and more than three hundred injuries. This article will first describe the background of the pipeline installation follows by an in-depth look at the explosion incident covering the events leading to the explosion, explosion damage, cause of the leak, spread of the leak, identification of a probable ignition source, and root causes in safety culture. Finally, lessons learnt and recommendations are given to prevent and mitigate the occurrence of similar incidents.  相似文献   
538.
The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ~30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally sustainable solution to the management of waste products.  相似文献   
539.
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.  相似文献   
540.
Thermal conversion is fundamental in an integrated waste management system due to the capability of reducing mass and volume of waste and recovering energy content from unrecyclable materials. Indeed, power generation from industrial solid wastes (ISW) is a topic of great interest for its appeal in the field of renewable energy production as well as for an increasing public concern related to its emissions. This paper is based on the process engineering and optimization analysis, commissioned to the University Campus-Biomedico of Rome by the MIDA Tecnologie Ambientali S.r.l. enterprise, ended up in the construction of an ISW thermo-conversion plant in Crotone (Southern Italy), where it is nowadays operating. The scientific approach to the process analysis is founded on a novel cascade numerical simulation of each plant section and it has been used initially in the process design step and after to simulate the performances of the industrial plant. In this paper, the plant process scheme is described together with the values of main operating parameters monitored during the experimental test runs. The thermodynamic and kinetic basics of the mathematical model for the simulation of the energy recovery and flue gas treatment sections are presented. Moreover, the simulation results, together with the implemented parameters, are given and compared to the experimental data for 10 specific plant test runs. It was found that the model is capable to predict the process performances in the energy production as well as in the gas treatment sections with high accuracy by knowing a set of measurable input variables. In the paper fundamental plant variables have been considered such as steam temperature, steam flow rate, power generated as well as temperature, flow rate and composition of the resulting flue gas; therefore, the mathematical model can be simply implemented as a reliable and efficient tool for management optimization of this kind of plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号