首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
  国内免费   51篇
安全科学   3篇
废物处理   1篇
环保管理   2篇
综合类   40篇
基础理论   58篇
污染及防治   28篇
评价与监测   1篇
社会与环境   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   31篇
  2012年   10篇
  2011年   10篇
  2010年   4篇
  2009年   9篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
11.
The functional state of the indicator species, the Gray mussel Crenomytilus grayanus (Bivalvia), has been analyzed in five areas of Peter the Great Bay exposed to anthropogenic pollution. The following indices of the state of mussels have been used: molecular biomarkers of energy metabolism—Na+,K+-ATPase, Mg2+-ATPase, and total ATPase activity—as well as the level of lipid peroxidation (LPO) and glutathione concentration in the hepatopancreas, gills, and gonads of mussels. The activity of ATPases, LPO level, and glutathione concentration significantly change in mussels from polluted areas relative to those in mussels from a conventionally unpolluted area (a bay in the Far Eastern State Marine Reserve). The molecular biomarkers used in the study provide reliable information on animal metabolism in impact areas. With consideration of the data obtained, it is concluded that the state of mussels in polluted areas is impaired.  相似文献   
12.
IntroductionBeingatypicalpolycyclicaromatichydrocarbons(PAHs) ,benzo[a]pyrene(BaP)deservesseriousstudybecausePAHsarenowrecognizedasmajorenvironmentalpollutants .ExposuretoPaHsisvirtuallyunavoidableandisstronglysuspendedofbeingacausativefactorincertaintumo…  相似文献   
13.
Quantum dots enhance Cu2+-induced hepatic L02 cells toxicity   总被引:1,自引:0,他引:1  
As a new class of xenogenous nanoparticle,quantum dots (QDs) possess the potential to co-exist with Cu2+ in human liver.The combined toxicity is thus concerned.Considering QDs and Cu2+ are known ROS (reactive oxygen species) inducer,we investigated the combined oxidative stress and corresponding protective strategy using human hepatic L02 cells.The results demonstrated that the presence of a small amount of MPA-CdTe QDs (2 μg/mL) in a Cu2+ solution (2.5-20 μg/mL) resulted in a higher toxicity with up to 8-fold cell viability decrease,which was accompanied by cell morphology changes.The combined toxicity was then confirmed as ROS associated oxidative stress with up to 300% and 35% increase of the intracellular ROS level and glutathione S-transferase (GST) activity,respectively.N-acetylcysteine (NAC) can also provide almost complete protection against the induced toxicity.Therefore,the ROS associated oxidant injury might be responsible for the QDs-Cu2+/Cu2+ induced toxicity and could be balanced through cytoprotective antioxidant enzyme GST.  相似文献   
14.
许多具有氧化作用的空气污染物,均能使细胞产生氧化损伤,使胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)含量上升。而TSLP是一种启动过敏性炎症的重要因子,会导致哮喘等疾病发生率的上升。在本研究中用过氧化氢(H_2O_2)模拟具有氧化作用的空气污染物进行染毒,研究细胞氧化应激水平的变化,并讨论还原型谷胱甘肽(GSH)对细胞受氧化损伤的保护作用。将大鼠支气管上皮细胞(RTE)分组培养,每组设置6个平行实验,分别用低、中、高剂量H_2O_2染毒3 h;高剂量设置1个重复,作为保护组,在染毒前用GSH保护2 h。结果显示,高剂量组H_2O_2(3.2 mmol·L~(~(-1)))染毒的细胞,其细胞活力下降(P0.01),丙二醛(MDA)水平上升(P0.01),TSLP水平上升(P0.05),与之相比,用GSH保护后的同剂量染毒组,上述指标得到全面缓解(P0.01)。这表明高浓度的H_2O_2会损伤细胞活力,并使MDA及TSLP水平上升,而GSH对TSLP及MDA的升高有极显著的抑制作用,即对细胞有一定的保护作用。  相似文献   
15.
We determined the normal levels of butyrylcholinesterase (BChE), carboxylesterase (CbE), and glutathione S-transferases (GST) activities in three South American toad species in order to establish reference values for field pesticide monitoring purposes. Interspecies variations in B-esterase and GST activities were examined according to body mass. In addition, comparative inhibition of BChE and CbE activities using malaoxon, and chemical reactivation of malaoxon-inhibited BChE activity using pyridine-2-aldoxime methochloride (2-PAM) were investigated. Bufo fernandezae had average activity values for BChE: 17.31 mmol min?1 ml?1; CbE: 621.49 nmol min?1 ml?1 and GST: 1.94 mmol min?1 ml?1 while B. arenarum enzymatic average activities were BChE: 9.51 mmol min?1 ml?1; CbE: 270.07 nmol min?1 ml?1, and GST: 1.59 mmol min?1 ml?1; finally Bufo schneideri had enzymatic mean values of BChE: 2.08 mmol min?1 ml?1; CbE: 301.95 nmol min?1 ml?1, and GST: 1.60 mmol min?1 ml?1. Moreover, we found an allometric relationship between plasma BChE and CbE activities and body size for the three toad species. We suggest that B. fernandezae would be the species with a higher tolerance capacity to organophosphorous insecticides compared to the other toad species, while B. schneideri may be the most vulnerable toad species to field pesticide exposure, although some other factors (e.g., brain AChE sensitivity or pesticide metabolism by phosphotriesterases) should be also taken into account. The malaoxon-inhibited BChE activity of the three toad species was reactivated in the presence of 2-PAM, and it is recommended as a specific and sensitive methodology in the assessment of field exposure to OP insecticides together to compare BChE activity levels between OP-exposed and nonexposed individuals.  相似文献   
16.
Membrane damage is one of the important consequences of chromium (Cr), an environmental toxicant, induced cytotoxicity. Reduced glutathione (GSH), a membrane protectant may be used to reduce the Cr-induced membrane damage. In the present study, the impact of Cr in presence and absence of GSH was studied on plasma membrane of the liver and kidneys in male Wistar rats. Significant increases in membrane cholesterol levels as well as significant decreases in membrane phospholipid levels in Cr exposed (0.8 mg per 100 g body weight, i.p., for 28 days) animals suggest structural alterations in both the liver and kidney plasma membranes. Alkaline phosphatase (ALP), total ATPase, and Na+–K+–ATPase activities of plasma membrane were significantly decreased in both the liver and kidneys after Cr treatment. This treatment also produced significant weight loss and increased Cr content in the liver and kidneys. However, GSH (8 mg per 100g body weight, i.p., daily at an interval of 6 h after injection of Cr for a period of 28 days) supplementation restored alterations induced by Cr in plasma membrane of both the liver and kidneys but was not able to eliminate the deposited Cr from the liver and kidney tissues.  相似文献   
17.
Lead (Pb) is a heavy metal, known to induce oxidative stress and produce damage to the antioxidant defence system ultimately leading to cell death. Antioxidants such as epigallocatechin 3-gallate (EGCG), a green tea polyphenol, was shown to play a protective role during Pb-exposure. In this study, human SH-SY5Y neuroblastoma cells were exposed to different concentrations (0.01–10?µM) of Pb for 48?h to determine effects on the viability of cells. It was observed that IC50 was at 5?µM and at this concentration the cells exhibited a significant increase in caspase-3 activity, an indicator of apoptosis at least by 10-fold and the decrease of 59.4% in glutathione (GSH) content. The total cellular prostaglandin-E2 (PGE2) level was found to be elevated at least 10-fold upon Pb exposure. However, the effects of Pb on cells pre-incubated with 50?µM EGCG followed by 5?µM Pb showed 40% inhibition in cell viability, 17.3% decrease in caspase-3 activity, 23% increase in GSH content, and 11.4% fall in PGE2 levels when compared with cells exposed to Pb only. Data suggest that EGCG exerted a significant protection to cell viability in preventing cell death and elevation in levels of GSH in cells exposed to Pb. However, EGCG did not elicit any significant effect on release of PGE2 indicating the nature of EGCG as an effective anti-apoptotic, antioxidant, and anti-inflammatory agent.  相似文献   
18.
New methods for the preparation and purification of nephrotoxic cysteine conjugates of chloro‐ and fluoro‐alkenes are described. The methods are applicable to a wide range of cysteine, N‐acetyl cysteine and glutathione conjugates and examples have been given of the synthesis and characterisation of two novel glutathione conjugates.  相似文献   
19.
The biochemical speciation of chromium compounds in mammalian cells is discussed with respect to uptake, metabolism, DNA binding and damaging. Whereas soluble hexavalent chromium is taken up rapidly and accumulated intracellularly after its reduction, compounds of trivalent chromium penetrate biomembranes about three orders of magnitude slower. Cr(VI) after its uptake is metabolised by electron donating compounds via Cr(V) to Cr(III) compounds. Chromium from various Cr(III) compounds, but not chromate, binds to chromatin in isolated cell nuclei. The DNA‐protein crosslinks and DNA strand breaks observed in rat liver and kidney after chromate administration are also found in vitro, when Cr(III) compounds (but not chromate) interacts with isolated nuclei. In the Chinese Hamster cell HGPRT mutation assay, three out of four tested Cr(III) complexes were found to be mutagenic. In a direct DNA strand break assay with supercoiled bacteriophage PM 2 DNA, neither chromate nor the four Cr(III) compounds tested caused nicks. However, the combined action of chromate plus glutathione as well as the isolated complex of pentavalent chromium, Na4Cr(glutathione)4, did cause DNA breaks. Reactive oxygen species are inferred to be the ultimate DNA nicking agents in this assay. In conclusion there appear to be two mechanisms of chromate genotoxicity; one with direct DNA damage caused by Cr(V) species and one via DNA‐protein crosslinks formed with Cr(III), the final reduction state of chromate.  相似文献   
20.
Considering that amphibians are good sentinels of environmental conditions, Rhinella arenarum embryos were used to investigate the effects of sublethal concentrations of the organophosphorus insecticide azinphos-methyl, focusing on its anticholinesterasic or pro-oxidant actions and its possible connection with the appearance of morphological alterations. Early amphibian embryos exposed to azinphos-methyl displayed a protective response through glutathione S-transferase induction, along with superoxide dismutase inhibition. At intermediate embryonic stages, embryos exposed to azinphos-methyl displayed superoxide dismutase inhibition and morphological alterations, although cholinesterase activity was not altered, suggesting that molecular targets other than cholinesterase were involved in the development of morphological alterations. At the end of embryonic development, decreases in reduced glutathione and cholinesterase inhibition were observed, along with a significant increase in the number of malformed embryos. The connection between biochemical alterations and the appearance of malformations was not evident in R. arenarum embryos. However, increased glutathione S-transferase and decreased superoxide dismutase activities could be considered as early markers of exposure to azinphos-methyl. The results obtained demonstrate that sublethal concentrations of azinphos-methyl are a serious threat to toad embryos in their natural habitats because biochemical and morphological alterations could impair their ability to deal with environmental stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号