首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   84篇
  国内免费   374篇
安全科学   19篇
废物处理   71篇
环保管理   53篇
综合类   467篇
基础理论   155篇
污染及防治   286篇
评价与监测   22篇
社会与环境   4篇
  2024年   4篇
  2023年   19篇
  2022年   28篇
  2021年   24篇
  2020年   22篇
  2019年   29篇
  2018年   43篇
  2017年   46篇
  2016年   72篇
  2015年   53篇
  2014年   41篇
  2013年   161篇
  2012年   60篇
  2011年   34篇
  2010年   39篇
  2009年   36篇
  2008年   45篇
  2007年   49篇
  2006年   43篇
  2005年   40篇
  2004年   30篇
  2003年   18篇
  2002年   14篇
  2001年   19篇
  2000年   19篇
  1999年   14篇
  1998年   12篇
  1997年   13篇
  1996年   7篇
  1995年   11篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
891.
丁绍兰  王景 《环境工程学报》2009,3(11):2072-2076
在已确定污泥驯化最佳条件的基础上,通过改变滤材、液固分离条件,添加营养物质继续降低pH等方法,进行提高生物沥滤法分离制革污泥中铬的分离效率的研究。同时考察化学沥滤法(1∶1硫酸)在相同条件下的分离效率。试验结果表明:用相应pH值酸液(1∶1硫酸配制)淋洗,淋洗+闷洗和抽真空+酸液淋洗等过滤方式可提高铬的分离效率。生物沥滤中当pH值下降至1.8时,分离效率即可达到94.65%,与直接用蒸馏水淋洗相比要高得多。化学沥滤中当pH值下降到1时,分离效果可达96.7%,沥滤污泥中剩余铬含量可达到制革污泥农用标准。  相似文献   
892.
A simple but comprehensive model is developed to quantify N losses from urea applied to a near-trench paddy field, considering all the N-transformations such as urea hydrolysis, volatilization, nitrification, denitrification, and all the important transportations like runoff, lateral seepage, vertical leaching and crop uptake. Seasonal average data of field observations for three crop seasons were used for model calibration and validation, which showed that ammonia volatilization accounted for 26.5-29.4% of the applied N and N uptake by crop occupied 38.2-44.8%, while N losses via surface runoff, vertical leaching and lateral seepage varied from 5.6-7.7%, 4.0-4.9% to 5.0-5.3% of the applied N, respectively. These observed results were well predicted by our model, indicating that the model performed effectively at quantifying N losses via individual processes in a wide range of urea application rates and benefit for developing water and fertilizer management strategies for near-trench paddy fields.  相似文献   
893.
Zhang JE  Ouyang Y  Ling DJ 《Chemosphere》2007,67(11):2131-2137
Acid rain is a problem of increasing agricultural, environmental, and ecological concerns worldwide. This study investigated impacts of simulated acid rain (SAR) on cation leaching from the Latosol in south China. Latosol is an acidic red soil and occurs in the tropical rainforest biome. Laboratory experiments were performed by leaching the soil columns with the SAR at a pH range from 2.5 to 7.0 over a 21-day period. A linear increase in effluent K+ concentration was found at the SAR pH 3.0, whereas an exponential decrease in effluent Na+ concentration was observed at all levels of the SAR pH. In general, leaching of Ca2+ and Mg2+ from the Latosol increased as the SAR pH decreased. There was a very good nonlinear correlation between the removal of soil K+ and the SAR pH (R2 = 0.91), a good nonlinear correlation between the removal of soil Mg+2 and the SAR pH (R2 = 0.83), a fairly good nonlinear correlation between the removal of soil Ca+2 and the SAR pH (R2 = 0.56), and no correlation between the removal of soil Na+ and the SAR pH (R2 = 0.06). Our study further revealed that the removal of soil cations such as K+, Ca+2, and Mg+2 can be quantified by the quadratic polynomial equations. In addition, impacts of the SAR on cation leaching depended not only on the SAR pH but also on the original soil pH.  相似文献   
894.
Goal, Scope and Background Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil. Materials and Methods Soil samples were collected in August 2004 from the trial site at depths of 0–10, 10–25, 25–50, 50–75, and 75–100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure. Results and Discussion Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha−1 applied every three years) had increased significantly (P<0.05) in both 0–10 cm and 10–25 cm layers. Mehlich 3 P in soil of the high treatment had increased significantly only at 0–10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO3 Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0–10 and 10–25 cm depths were significantly higher in the high biosolids treatment than in the control. Mass balance calculation indicated that most P applied with biosolids was retained by the top soil (0–25 cm). The standard biosolids treatment (equivalent to 300 kg N ha−1 applied every three years) had no significant effect on concentrations of TP, Mehlich 3 P and Olsen P, and P fractions in soil. Conclusions The results indicate that the soil had the capacity to retain most biosolids-derived P, and there was a minimal risk of P losses via leaching in the medium term in the sandy forest soil because of the repeated biosolids application, particularly at the standard rate. Recommendations and Perspectives Application to low-fertility forest land can be used as an environmentally friendly option for biosolids management. When biosolids are applied at a rate to meet the N requirement of the tree crop, it can take a very long time before the forest soil is saturated with P. However, when a biosolids product contains high concentrations of P and is applied at a high rate, the forest ecosystem may not have the capacity to retain all P applied with biosolids in the long term. ESS-Submission Editor: Dr. Jean-Paul Schwitzguébel jean-paul.schwitzguebel@epfl.ch  相似文献   
895.
Regular ingestion of soils could pose a potential health threat due to long-term toxic element exposure. In order to estimate the human bioavailability quotients for As and heavy metals, 12 urban roadside soil samples were collected and analyzed for As, Pb, Cu, Zn, Ni, Co, and Cr using Simple Bioavailability Extraction Test (SBET). The quantities of As, Pb, Cu, Zn, Ni, Co, and Cr leached from soils within the simulated human stomach for 1 h indicated, on average, 27.3, 71.7, 40.4, 59.3, 17.7, 27.2 and 5.6% bioavailability, respectively. Significant positive correlations were observed between the amounts leached using SBET and the total amounts dissolved with HNO3-HCl-HF acid mixtures. Stepwise multiple regression analysis indicated that the amounts leached with SBET for As, Pb, Zn, Ni, and Co were not related to any of the physic-chemical parameters measured (i.e., soil texture, pH, total organic matter). These results may be valuable for providing input data for risk assessment at sites subject to anthropogenic soil contamination.  相似文献   
896.
保护地番茄养分利用及土壤氮素淋失   总被引:45,自引:0,他引:45  
在施用不同复合肥料的条件下,对保护地蔬菜蕃茄对N、P、K养分的吸收利用及保护地条件下土壤的硝酸盐淋洗进行了研究,结果表明,复合肥的品种及施肥水平对番茄的产量影响不大,与CK相比番茄果实增产12..7%-18.4%;复合肥N、P养分的当季利用率不足10%,而K素的当季利用率也不超出25%,传统的大水漫灌条件,蔬菜保护地土壤硝酸盐的淋洗状态相当严重,并有可能造成地下水的硝酸盐污染,长期过量施肥及大小漫灌等措施是造成土壤养分累积、硝酸盐淋洗严重、肥料利用率低的根本原因,图2表3参11  相似文献   
897.
The toxicity characteristic leaching procedure (TCLP) is the current US-EPA standard protocol to evaluate metal leachability in wastes and contaminated soils. However, application of TCLP to assess lead (Pb) leachability from contaminated shooting range soils may be questionable. This study determined Pb leachability in the range soils using TCLP and another US-EPA regulatory leaching method, synthetic precipitation leaching procedure (SPLP). Possible mechanisms that are responsible for Pb leaching in each leaching protocol were elucidated via X-ray diffraction (XRD). Soil samples were collected from the backstop berms at four shooting ranges, with Pb concentrations ranging from 5,000 to 60,600 mg kg−1 soil. Lead concentrations in the TCLP leachates were from 3 to 350 mg l−1, with all but one soil exceeding the USEPA non-hazardous waste disposal limit of 5 mg l−1. However, continued dissolution of metallic Pb particles from spent Pb bullets and its re-precipitation as cerussite (PbCO3) prevented the TCLP extraction from reaching equilibrium at the end of the standard leaching period (18 h). Thus, the standard one-point TCLP test would either over- or under-estimate Pb leachability in shooting range soils. Lead concentration in the SPLP leachates ranged from 0.021 to 2.6 mg l−1, with all soils above the USEPA regulatory limit of 0.015 mg l−1. In contrast to TCLP, SPLP leaching had reached equilibrium, with regard to both pH and Pb concentrations, within the standard 18 h leaching period, and the analytical SPLP results were in good agreement with those derived from modeling. Thus, we concluded that SPLP is a more appropriate alternative than TCLP for assessing lead leachability in range soils.  相似文献   
898.
Extraction of Crotalaria juncea (Sunn hemp) oil from its seeds is important to study because of its proven promising clean fuel characteristics. Soxhlet-based solvent extraction with some modification has been tried to extract the oil. In a fluid-solid mass transfer system, where, solids are present as packed bed, dynamic behavior of bed can be described in terms of concentration of solute in solids/solvent-time profile. Some of the well-known semi-empirical models of adsorption dynamics are modified and applied since leaching of oil is just the reverse of the phenomenon of adsorption in porous media. Modified Bohart-Adams model (non-linear), modified Bed Depth Service Time (BDST) (linear), and modified Thomas model (non-linear forms) are applied. It is found that these models fit to the experimental result reasonably well. Results suggest that higher bed height, with proper shape (annular) of the bed, having a higher solvent velocity will work best. Comparing the error values (SSE, SAE, and ARE) in the four cases, it is very clear that the modified BDST model is the most suitable. In the light of transient study it is established that the modified Soxhlet apparatus with cylindrical and annular beds, performs best while leaching Crotalaria juncea oil from their seeds.  相似文献   
899.
将废RK-05甲醇合成催化剂经过煅烧、浸取、精制等工序回收其中的铜和锌。经正交实验得到煅烧废催化剂的最优工艺参数为:废催化剂筛目100目,煅烧温度950℃,煅烧时间60 min。最佳浸取工艺条件为:废催化剂加入量约4 g/L,浸取温度75℃,浸取剂用量与理论用量体积比2.0~3.0,浸取剂浓度4.0 mol/L,浸取时间10min。精制工序制备CuO的最佳工艺条件为:锌粒与滤渣质量比为1.00,反应时间3 h,煅烧温度450℃,煅烧时间4 h。制备ZnO的最佳工艺条件为:煅烧温度800℃,煅烧时间60 min。回收的产品CuO纯度为99.1%,满足GB/T674—2003《化学试剂粉状氧化铜》中优级品的标准。回收的产品ZnO纯度为99.6%,满足GB/T3185—1992《氧化锌(间接法)》中一级品的标准。  相似文献   
900.
The objective was to estimate leaching of the fungicide azoxystrobin (methyl (αE)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene)benzene-acetate) and one of its primary degradation products R234886 ([(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4-yloxyl]-phenyl-3-methoxyacrylic acid], major fraction) at four agricultural research fields (one sandy and three loamy) in Denmark. Water was sampled from tile drains, suction cups and groundwater wells for a minimum period of two years after application of azoxystrobin. Neither azoxystrobin nor R234886 were detected at the sandy site, but did leach through loamy soils. While azoxystrobin was generally only detected during the first couple of months following application, R234886 leached for a longer period of time and at higher concentrations (up to 2.1 μg L−1). Azoxystrobin is classified as very toxic to aquatic organisms and R234886 as very harmful. Our study shows that azoxystrobin and R234886 can leach through loamy soils for a long period of time following application of the pesticide and thereby pose a potential threat to vulnerable aquatic environments and drinking water resources. We thus recommend the inclusion of azoxystrobin and R234886 in pesticide monitoring programmes and further investigation of their long-term ecotoxicological effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号