全文获取类型
收费全文 | 865篇 |
免费 | 132篇 |
国内免费 | 1223篇 |
专业分类
安全科学 | 31篇 |
废物处理 | 42篇 |
环保管理 | 51篇 |
综合类 | 1411篇 |
基础理论 | 273篇 |
污染及防治 | 387篇 |
评价与监测 | 20篇 |
社会与环境 | 5篇 |
出版年
2024年 | 20篇 |
2023年 | 72篇 |
2022年 | 135篇 |
2021年 | 147篇 |
2020年 | 109篇 |
2019年 | 112篇 |
2018年 | 104篇 |
2017年 | 112篇 |
2016年 | 98篇 |
2015年 | 105篇 |
2014年 | 130篇 |
2013年 | 153篇 |
2012年 | 136篇 |
2011年 | 117篇 |
2010年 | 81篇 |
2009年 | 84篇 |
2008年 | 87篇 |
2007年 | 77篇 |
2006年 | 71篇 |
2005年 | 50篇 |
2004年 | 46篇 |
2003年 | 35篇 |
2002年 | 26篇 |
2001年 | 21篇 |
2000年 | 17篇 |
1999年 | 12篇 |
1998年 | 10篇 |
1997年 | 12篇 |
1996年 | 5篇 |
1995年 | 15篇 |
1994年 | 3篇 |
1993年 | 7篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有2220条查询结果,搜索用时 15 毫秒
931.
首次构建了以生物质活性炭纤维笼电极为空气阴极的微生物燃料电池(biomass activated carbon fiber cage-shaped air-cathode microbial fuel cell,BACFC-ACMFC),并以厌氧污泥接种,以葡萄糖作为碳源,研究了该MFC在连续运行条件下的产电性能、电池内阻情况和最优运行条件。结果表明:在一个运行周期内,该MFC最佳运行条件为:体积浸没比为50%、pH=8、污泥投加量为1.8 g·L-1。当外接电阻为1 000 Ω时,该MFC最大输出电压为257.89 mV,最大输出功率密度为4 082.99 mW·m-3,电池内阻为419.88 Ω,与目前其他阴极材料的微生物燃料电池相比,该新型生物质活性炭纤维笼空气阴极微生物燃料电池功率密度较高,内阻较低。SEM分析可知,阴极具有较大的比表面积和孔隙率,有利于与氧气的充分接触。在浸入溶液中的半面阴极上发现大量微生物附着,这可能和氧气还原有关。 相似文献
932.
为了考察运行方式对厌氧氨氧化系统脱氮性能及菌群结构的影响,建立一套厌氧移动床生物膜反应器,在(25±1) ℃恒温、低基质(TN≤60 mg·L−1)条件下,分别以连续式和间歇式方式运行,采用高通量测序,基于直系同源蛋白簇基因(COGs),对16S rRNA扩增子测序结果进行功能预测,来表征微生物菌群结构和微生物功能的变化。结果表明:系统总氮负荷为(227±13) mg·(L·d)−1时,间歇式运行脱氮效率(90.6%)优于连续式运行效率(74.6%),生物膜厌氧氨氧化细菌的相对丰度高于悬浮污泥;反应器由连续式变为间歇式运行后,主要功能菌属Ca. Brocadia丰度降低,同时,具有部分反硝化作用的Pseudomonas菌丰度出现明显升高。进一步分析可知,在适量的有机物条件下,间歇式运行能够获得更好的厌氧氨氧化与反硝化协同处理效果。本研究结果可为污水处理厂的实际运行提供参考。 相似文献
933.
为探究高有机负荷(organic loading rate,OLR)对好氧颗粒污泥在序批式反应器(sequencing batch reactor,SBR)中的形成和稳定性能的影响及高OLR条件下微生物群落结构的特征,采用连续监测方法对运行过程中颗粒污泥形貌、水质、沉降性能以及EPS的变化进行探究。结果表明:在OLR为14.4 kg·(m3·d)−1的条件下,颗粒化进程较快,43 d完成颗粒造粒;并且高OLR引起丝状菌在颗粒表面大量附着,造成颗粒沉降性能和水质处理能力不稳定;通过改变进水中蛋白胨的占比来抑制丝状菌生长,使好氧颗粒污泥系统重新恢复稳定;在此过程中,混合液悬浮固体质量浓度(mixed liquid suspended solids,MLSS)、混合液挥发性悬浮固体质量浓度(mixed liquid volatile suspended solids,MLVSS)随OLR的增加而增加,但受丝状菌增加的影响会下降,而在丝状菌消除之后,MLSS和MLVSS恢复增长;SVI随OLR的增加不断下降,而受丝状菌增加的影响会呈现上升趋势,在丝状菌消除后,颗粒沉降性能恢复,SV30/SV5在1.0左右波动;胞外聚合物(extracellular polymeric substances,EPS)受OLR和丝状菌影响较大,尤其是紧密结合型的EPS;恢复正常的颗粒污泥可高效去除进水中的COD、NH4+-N和TN,去除率分别为91.5%、92.0%和79.4%;采用MiSeq高通量测序的方法发现高OLR下好氧颗粒污泥中去除有机物和氮的优势菌门为Saccharibacteria、Bacteroidetes和Proteobacteria;异养硝化、好氧反硝化菌丰度较高。由此可以看出,异养硝化-好氧反硝化可能是好氧颗粒污泥的主要脱氮方式。本研究结果可为SBR系统控制好氧颗粒污泥中丝状菌的生长,维持好氧颗粒污泥稳定性提供参考。 相似文献
934.
厌氧氨氧化工艺在处理生活污水过程中存在处理效率不稳定的问题,阻碍了其在生活污水处理中的工程应用。采用包括缺氧反应器、好氧反应器、膜组件3个部分的anammox-MBR (AX-MBR) 耦合工艺来处理生活污水,以期解决该问题。实验开始时,先投加污水处理厂好氧活性污泥进行启动,后降低反应系统的溶解氧,最后再投加厌氧氨氧化菌 (AnAOB) 。结果表明,投加AnAOB可有效提高AX-MBR的NH4+-N去除率,NH4+-N平均去除率由68%升至87%。实验过程中未对反应器进行温度控制,故在反应温度低于20 ℃时发现,AnAOB活性随着温度降低急剧下降。在低温环境运行时,可采用降低进水负荷的方式来保证处理效果。采用15N稳定同位素示踪法对AnAOB脱氮贡献率进行分析表明,AX-MBR氮元素的去除主要由AnAOB主导的途径完成,其脱氮贡献率可达65%。而16S高通量测序结果表明,缺氧反应器中的AnAOB主要为Candidatus Kuenenia,且缺氧反应器和好氧反应器的反硝化细菌丰度远大于氨氧化细菌丰度。这表明AX-MBR中NO2--N主要来源于部分反硝化,这在群落水平上证明了短程反硝化-厌氧氨氧化的存在。本研究结果可为厌氧氨氧化的工艺发展提供参考。 相似文献
935.
脱氮是污水治理的重要目标之一。在实际污水处理中,由于起主要脱氮作用的硝化菌生殖代谢速率慢,易受冲击,且易流失,以致活性污泥的脱氮能力在运行过程中易受影响,因此,利用微生物固定化技术将硝化菌截留在生化池中具有重要意义。经聚氧化丙烯三醇(polyoxypropylene triol, PPT)改性后的聚乙烯醇(polyvinyl alcohol, PVA)凝胶颗粒可以有效将活性污泥进行固定化并用于污水处理中。结果表明:改性后的凝胶球具有热稳定性好、孔隙分布均匀、比表面积较大、总孔容较大等优点,用改性聚乙烯醇凝胶颗粒包埋驯化后的活性污泥,经过活性恢复处理后,与初始污泥相比,氨氧化速率提升18.28%,呼吸速率降低2.01%,且由于形成较好的厌氧、缺氧、好氧环境,微生物种群多样性、物种丰富度及群落均匀性均升高,并有较好的氨氮去除性能,在低浓度废水治理中,氨氮去除率达到70%。上述研究中分析了改性凝胶颗粒的性能以及包埋活性污泥中微生物菌群和活性的变化,可为凝胶包埋活性污泥技术在氨氮废水治理的研究提供参考。 相似文献
936.
937.
用改良Hummers法和碳热还原法分别制备了石墨烯和碳化钴钼。用透射电镜(TEM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)表征了材料的形貌和结构。用循环伏安(CV)表征了其氧还原(ORR)催化性能,结果表明,复合材料的氧还原峰电流和起峰电位均大大优于单一材料。旋转圆盘电极(RDE)实验表明复合材料的氧还原反应为高效的四电子转移过程。含有6 mg·cm-2石墨烯/碳化钴钼复合材料作为阴极催化剂的微生物燃料电池(MFCs)最大功率密度为418 mW·m-2,达到商业铂碳的68.3%。因此,廉价的石墨烯/碳化钴钼复合材料作为MFCs阴极氧还原催化剂具有巨大的应用潜力。 相似文献
938.
针对人工快渗系统运行启动时间普遍较长的问题,研究了自然挂膜、活性污泥挂膜和优势菌挂膜3种方式对系统处理性能及微生物数量和酶活性的影响。结果表明,采用优势菌挂膜的启动时间比自然挂膜和活性污泥挂膜分别缩短了35 d、17 d,从第38天起,COD去除率稳定在90%以上,系统的抗水力负荷冲击能力也较强;TN去除率较自然挂膜和活性污泥挂膜分别提高了48.1%、37.9%,亚硝化菌和反硝化菌数量的增加为短程硝化反硝化脱氮提供了基础;细菌、真菌、放线菌的总量比自然挂膜和活性污泥挂膜分别高出1.66倍、1.02倍,纤维素酶、脲酶活性也相应提升,微生物的空间分布、酶的活性与各人工快渗系统对污染物的去除效果表现出一致性。 相似文献
939.
构建了2个装载不同填料的厌氧污泥床(UASB)反应器(R1:载活性炭的K3填料;R2:普通K3填料),对比研究了2种厌氧氨氧化系统的启动特征、脱氮性能,分析了R1反应器的微生物群落结构变化规律,并对R1不同高程的基质去除特征和微生物群落组分进行了解析。结果发现,R1在第86天启动成功,短于R2的100 d,长期运行后R1和R2的最大氮容积负荷(NLR)分别为2.156和2.122 g·(L·d)-1,最大氮去除负荷(NRR)分别达到1.855和1.815 g·(L·d)-1。在R1中,内部基质浓度随高度增加而降低,进水NH4+-N浓度较低时(50、100 mg·L-1)和较高时(350、450 mg·L-1),基质的去除分别集中在反应器高度0~7 cm和17~37 cm处,而且厌氧氨氧化菌含量与氮去除率间呈正相关关系。另外,R1运行过程中厌氧氨氧化优势菌种由Candidatus brocadia(20 d)变为Candidatus Jettenia和Candidatus Kuenenia的混合菌种(134 d)。 相似文献
940.
青海高原土壤拮抗性放线菌的生态分布 总被引:8,自引:2,他引:8
采用琼脂块法测定了分离自青海高原不同生态环境下的 1 007株代表性放线菌的拮抗性.结果表明:①供试菌中对大肠杆菌、金黄色葡萄球菌、假丝酵母、青霉、辣椒疫霉、西瓜枯萎菌、棉花枯萎菌及黄瓜枯萎菌有拮抗性的放线菌占供试菌总数的比率分别为 9. 1%、27. 2%、2. 1%、2. 6%、13. 8%、10. 1%、7. 1%及 7. 4%;在青海高原(西部)土壤的拮抗性放线菌中,抗细菌放线菌多于抗真菌放线菌,抗G+细菌的放线菌多于抗G-细菌放线菌,抗丝状真菌放线菌多于抗单细胞真菌放线菌.②耕作土壤中,拮抗性放线菌株数占放线菌总株数的百分率 (拮抗菌百分率 )是自然土壤的3. 5倍,且耕作土壤拮抗菌百分率按菜地(71. 7% ) >粮田(40. 6% ) >绿肥地(32. 8% ) >果园(25. 0% )的顺序排列.旱地土壤拮抗菌百分率明显高于水地.③不同类型土壤拮抗菌百分率均不同,且不同类型土壤拮抗菌百分率按黑钙土>栗钙土>灰钙土>砂土的顺序排列.④拮抗性放线菌的数量、拮抗菌百分率与土壤有机质、全氮、碱解氮、全磷及磷酸酶活性有关.其中有机质和全氮与拮抗性放线菌株数和拮抗菌百分率的相关性达极显著水平 (P<0. 01).抗细菌与抗真菌拮抗性放线菌的出现频率与土壤有机质、全氮及放线菌总数量的相关性分别达到了极显著(P<0. 01)与显著水平(P<0. 05),且土 相似文献