首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6161篇
  免费   560篇
  国内免费   2531篇
安全科学   338篇
废物处理   850篇
环保管理   638篇
综合类   5055篇
基础理论   538篇
污染及防治   1654篇
评价与监测   156篇
社会与环境   21篇
灾害及防治   2篇
  2024年   5篇
  2023年   23篇
  2022年   76篇
  2021年   89篇
  2020年   106篇
  2019年   113篇
  2018年   132篇
  2017年   168篇
  2016年   208篇
  2015年   290篇
  2014年   414篇
  2013年   459篇
  2012年   613篇
  2011年   585篇
  2010年   489篇
  2009年   513篇
  2008年   371篇
  2007年   641篇
  2006年   731篇
  2005年   528篇
  2004年   416篇
  2003年   433篇
  2002年   383篇
  2001年   290篇
  2000年   243篇
  1999年   208篇
  1998年   165篇
  1997年   122篇
  1996年   112篇
  1995年   104篇
  1994年   62篇
  1993年   64篇
  1992年   31篇
  1991年   18篇
  1990年   17篇
  1989年   2篇
  1988年   6篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1978年   4篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有9252条查询结果,搜索用时 15 毫秒
441.
不同条件下高炉渣吸附水中无机磷的研究   总被引:2,自引:1,他引:1  
高炉渣(BFS)是在冶炼生铁过程中产生的固体废弃物,开展高炉渣的资源化研究具有重要意义.为了对水淬高炉渣净化含磷污水的应用提供理论依据,采取等温吸附的实验方法,比较了不同水淬炉渣的吸附磷效果,研究了不同pH和不同温度下水淬炉渣吸附磷的特点,结果如下:利用Langmuir等温吸附方程炉渣吸附磷的过程进行拟合,其相关系数均能达到显著水平.炉渣的碱度越高,吸附磷的效果越好;炉渣对磷的吸附能力随溶液pH的增加而降低,且初始为酸性(pH=2、4)的溶液在吸附达到平衡后pH有所上升,而初始为碱性的溶液(pH=10、12)在吸附达到平衡后pH有所下降;炉渣对磷的吸附是一个自发放热过程.  相似文献   
442.
利用MgSO4·7H2O和Na2HPO4·12H2O作为试验药剂,通过正交试验和单因素优化试验,对化学沉淀法处理甲胺生产废水中氨氮的工艺条件进行优化.结果表明,在pH=9.4、反应时间15 min、搅拌速度150 r/min、Mg:N(摩尔比值)=1.1、P:N(摩尔比值)=1.0时,化学沉淀法处理300 mL甲胺生产废水,氨氮去除率维持在92%以上,COD去除率可达37%以上.同时为验证工艺条件适应性和沉淀物(MgNH4PO4)作为农作物肥料使用的价值性,对最优条件下得到的沉淀物进行研究.与MgNH4PO4纯度为100%相比,沉淀物MgNH4PO4纯度达到86%以上.因此,化学沉淀法处理氨氮不仅具有良好的效果,而且得到的MgNH4PO4含有较高N、P,可以用作农作物肥料.  相似文献   
443.
制备了聚硅酸氯化铝(PASC)絮凝剂,并用其进行了皂素废水处理实验。考察了絮凝剂投加量、pH值、搅拌速度对COD和浊度去除率的影响。结果表明,当絮凝剂投加量为9~13.5 mg/L、pH值5~7、搅拌速度150~250 r/min时,COD和浊度去除效果较好。最佳工艺条件为:絮凝剂投加量11.25 mg/L、pH值6、搅拌速度200 r/min。此时,COD去除率为93.7%,浊度去除率为97.5%。PASC的絮凝性能明显优于PAC。  相似文献   
444.
湖州市埭溪镇污水处理厂的设计规模,近期为2万m^2/d,远期为3万m^2/d,其污水处理工艺采用改良式A^2/O工艺,污泥处理工艺采用带式浓缩脱水一体机。文中着重介绍了工程设计参数、处理工艺流程及其设计特点。  相似文献   
445.
The aim of this research was to monitor the influent and effluent water quality of the aeration, facultative and oxidation water treatment ponds of an industrial estate. This industrial estate, the largest in northern Thailand, has proposed to utilization of reclaimed treated wastewater in their raw water supply so as to cope with the yearly water shortage during the dry season. Water samples were collected four times from four sampling points and evaluated for their dissolved organic matter (DOM) content in terms of dissolved organic carbon (DOC), ultraviolet light absorbance at 254 nm (UV-254), specific ultraviolet absorption (SUVA), trihalomethane formation potential (THMFP) and trihalomethane (THM) species. Average values of DOC, UV-254, SUVA and THMFP in the influent wastewater of 12.9 mg L−1, 0.165 cm−1, 1.29 L mg−1m−1 and 1.24 mg L−1, respectively, were observed. The aeration ponds produced the best results: a 54% reduction of DOC, a 33% reduction of UV-254, and a 57% reduction of THMFP. However, SUVA in the aeration pond effluent showed a moderate increase. The facultative ponds and oxidation ponds did not take part in the reduction of DOC, UV-254, SUVA and THMFP. Average DOC, UV-254, SUVA and THMFP value of the treated wastewater were 5.8 mg L−1, 0.107 cm−1, 1.85 L mg−1m−1 and 468 μg L−1, respectively. Chloroform, at 72.6% of total THMFP, was found to be the predominant THM species.  相似文献   
446.
Numerical models are often used to evaluate the potential impact of human alternation of natural water bodies and to help the design of the alternation to mitigate its impacts. In the past decade, three-dimensional hydrodynamic and reactive transport modeling has matured from a research subject to a practical analysis technology. This paper presents a practical study in which a three-dimensional hydrodynamic and water quality model [hydrodynamic eutrophication model (HEM-3D)] was applied to determine the optimal location for treated wastewater discharged from marine outfall system in the Keelung harbor and the adjacent coastal sea. First, model validation was conducted with respect to surface elevation, current, and water quality variables measured in the Keelung harbor station and its coastal sea. The overall performance of the model was in qualitative agreement with the available field data. The model was then used to evaluate several scenarios of the locations from marine outfall system. Based on model simulation results, a location at the northeast of Ho-Ping Island was recommended for adoption because the environmental impact is smaller than any other alternative.
Wen-Cheng LiuEmail:
  相似文献   
447.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   

448.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   
449.

Background, Aim and Scope

The presence of heavy metals in wastewater is one of the main causes of water and soil pollution. The aim of the present study was to investigate the removal of Cd, Cu, Pb, Hg, Mn, Cr and Zn in urban effluent by a biological wastewater treatment, as well as to quantify the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn in dewatering sludge from the Biological Wastewater Treatment Plant to Ribeirão Preto (RP-BWTP), Brazil.

Materials and Methods

Concentrations of Cd, Cr, Cu, Mn and Pb in wastewater and those of Ni in sludge were determined by atomic absorption spectrophotometry with graphite furnace atomization. Mercury concentrations in wastewater were measured by hydride generation atomic spectrophotometry, and Zn levels were determined by atomic absorption spectrophotometry using acetylene flame. In sludge, the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sn, Tl, V and Zn were determined by inductively coupled plasma-mass spectrometry.

Results

The percentages of removal efficiency (RE) were the following: Hg 61.5%, Cd 60.0%, Zn 44.9%, Cu 44.2%, PB 39.7%, Cr 16,5% and Mn 10.4%. In turn, the mean concentrations (mg/kg) of metals in dewatering sludge followed this increasing order: Tl (<0.03), Hg (0.31), Be (0.43), As (1.14), Cd (1.34), V (59.2), Pb (132.1), Sn (166.1), Cr (195.0), Mn (208.1), Ni (239.4), Cu (391.7), Zn (864.4) and Fe (20537).

Discussion

The relationship between metal levels in untreated wastewater, as well as the removal efficiency are in agreement with previous data from various investigators, It is important to note that metal removal efficiency is not only affected by metal ion species and concentration, but also by other conditions such as operating parameters, physical, chemical, and biological factors.

Conclusions

Metal values recorded for treated wastewater and sludge were within the maximum permitted levels established by the Environmental Sanitation Company (CETESB), São Paulo, Brazil.

Recommendations

There is an urgent need for the authorities who are responsible for legislation on sludge uses in agriculture of establishing safety levels for As, Be, Hg, Sn, Tl and V.

Perspectives

According to the current metal levels, RP-BWTP sludge might be used for agriculture purposes. However, for an environmentally safe use of sewage sludge, further studies including systematic monitoring are recommended. Annual metal concentrations and predicted variations of those elements in the sludge should be monitored.
  相似文献   
450.
气浮过滤法处理印染废水   总被引:2,自引:0,他引:2  
高效气浮工艺是处理印染废水的有效方法,通过在溶气罐中使用高效填料、优化设计溶气释放器及使用双层快滤,可大大提高处理效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号