首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   40篇
  国内免费   196篇
安全科学   33篇
废物处理   47篇
环保管理   30篇
综合类   322篇
基础理论   192篇
污染及防治   74篇
评价与监测   5篇
社会与环境   12篇
灾害及防治   4篇
  2023年   2篇
  2022年   13篇
  2021年   11篇
  2020年   19篇
  2019年   19篇
  2018年   16篇
  2017年   18篇
  2016年   21篇
  2015年   33篇
  2014年   20篇
  2013年   62篇
  2012年   44篇
  2011年   38篇
  2010年   33篇
  2009年   31篇
  2008年   38篇
  2007年   42篇
  2006年   31篇
  2005年   30篇
  2004年   25篇
  2003年   14篇
  2002年   18篇
  2001年   17篇
  2000年   21篇
  1999年   15篇
  1998年   19篇
  1997年   14篇
  1996年   14篇
  1995年   8篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有719条查询结果,搜索用时 265 毫秒
371.
甲醇合成精制装置一旦发生泄漏事故,将会对厂内甚至相邻地区的人员生命、机械设备及环境造成严重威胁。为了有效预防事故的发生,通过ALOHA化学品泄漏扩散模拟软件对甲醇合成精制装置进行危险性辨识和评价。结果表明,热辐射危害是池火灾、BLEVE火球的主要危害;BLEVE火球和中毒事故危害范围较广:在BLEVE火球的热辐射中暴露60 s造成死亡的距离均超过100 m,泄漏孔径达5cm时毒气的体积分数达ERPG-3值的距离达326 m。因此,消防设计是甲醇精制装置安全系统设计的重要组成部分。根据《石油化工企业设计防火规范》及相关消防标准规范对该甲醇合成精制车间进行相应的消防系统设计,并用Auto CAD专业绘图软件绘制消防设施的布置图,为施工单位提供依据,从而提高甲醇合成精制装置的安全性,减少人员伤亡事故的发生。  相似文献   
372.
废旧手机电池进行人工拆解后,将正极浸入N-甲基吡咯烷酮(NMP)中,使正极活性物质与铝箔分离.再利用酸浸-碱出方法回收正极活性物质中的钴和锂.确定最佳工艺参数为:0.8 molg·L-1的硫酸溶液,反应温度50℃,固液比1∶20g· L-1,水浴加热60 min.用饱和Na2CO3溶液沉淀锂得到Li2CO3,NaOH溶液将钴沉淀,400℃煅烧3h得到Co3 O4.按化学计量比将Co3O4与Li2CO3混合,预处理后700℃煅烧7h得到LiCoO2粉末.对再生的LiCoO2进行了结构和形貌测试,表明再生后生成了颗粒均匀、结晶度较好的LiCoO2.  相似文献   
373.
生活垃圾在不同湿解条件下蛋白质含量的动态分析研究   总被引:1,自引:0,他引:1  
垃圾湿解处理工艺是一种新型的垃圾处理工艺,将垃圾中的有机物回收利用,只将少量的垃圾进行填埋或焚烧处理,不仅减少了垃圾量且使资源利用达到最大化。研究所得成果,能够促进垃圾湿解处理工艺的不断改进和完善。以烟台市生活垃圾处理厂经过湿解处理的垃圾筛下物作为实验样品。通过控制变量法、平行实验法以及考马斯亮蓝法进行比色实验,最终分析得出生活垃圾湿解的最佳条件。根据试验样品所给湿解条件范围以及实验数据的综合分析可推断出当湿解压强为0.6 MP、湿解温度为110℃、湿解时长为50 min时湿解后垃圾中蛋白质含量最高,湿解效果最好。  相似文献   
374.
利用贪铜杆菌(Cupriavidu smetallidurans)SHE在好氧条件下还原Se(Ⅳ)生成硒纳米颗粒,考察不同条件对还原过程的影响,并对还原产物进行表征.结果显示,菌株SHE还原Se(Ⅳ)的最适条件为pH=8、温度30℃、底物浓度1.0 mmol·L-1,在此条件下Se(Ⅳ)的还原率最高,可达100%.通过紫外光谱扫描、微观形貌分析、粒度分析及X射线衍射分析表明,合成的硒纳米颗粒为六方晶型,粒径为(130.2±27.0)nm.研究结果表明,菌株SHE可有效的还原Se(Ⅳ)生成硒纳米颗粒,为微生物合成纳米硒的潜在应用提供参考.  相似文献   
375.
应用荧光光谱法研究Cu2+离子与血清蛋白质混合组份体系的结合反应机制,测定了反应体系的结合常数K、结合位点数n,探讨了荧光猝灭机理。同时探索了Cu2+与蛋白质混合组份体系及单一组份体系相互作用的差异。结果表明:混合组份体系中,牛血清白蛋白(Bovine serum albumin,BSA)与牛乳铁蛋白(Bovine lactoferrin,BLF)分子间也存在着相互作用,从而影响混合组份体系中BSA/BLF与Cu2+的相互作用,Cu2+与蛋白质混合组份体系相互作用并非蛋白质单组份体系作用之和。分析实验数据,首次发现当BSA/BLF达到临界比值时,金属离子与混合蛋白质组份相互作用过程中出现了蛋白质分子的"契合"现象。文章利用生物酶反应机制中的酶活性部位柔性假说合理解释了Cu2+与血清蛋白质混合组份体系相互作用中的"量敏效应"。  相似文献   
376.
在调节pH值分别为3.0和10.0的条件下,与pH值保持原状相对比,研究了15~20℃下初沉污泥水解酸化过程中氨氮、磷酸盐和溶解性COD(SCOD)、碳水化合物、蛋白质和挥发性脂肪酸(VFAs)等有机质组分的释放。结果表明,强酸条件,特别是强碱会抑制氨氮的释放,试验周期结束时,碱性条件氨氮的释放量为1.28 mg/g TS,远小于对比试验(6.97 mg/g TS);磷酸盐的释放量表现为酸性>碱性>对比试验,反应至第4天时各条件下的释放量即趋于稳定,分别为2.47 mg/g TS、1.23 mg/g TS和1.18 mg/g TS;碱性条件下,各有机质组分的释放量大于其他条件,其中总VFAs波动较大,在第8天左右的产生量接近最大值,为201.59 mg COD/g VS,且以乙酸为主,其余组分在较短的时间里接近或达到最大值后保持相对稳定。  相似文献   
377.
纳米二氧化铈对蛋白核小球藻的生物学效应研究   总被引:1,自引:0,他引:1  
纳米二氧化铈(CeO_2)在被广泛使用的同时,其潜在的环境效应也受到人们越来越多的关注。以蛋白核小球藻(Chlorella pyrenoidosa)为实验材料,研究纳米CeO_2的生物学效应,为探索纳米材料对微藻的生物学效应提供理论基础和数据支持。研究结果显示:1)纳米CeO_2在低浓度(≤80 mg·L~(-1))时可促进蛋白核小球藻的生长及色素、可溶性蛋白等的合成,但在高浓度(80 mg·L~(-1))下具有毒性效应;2)低浓度纳米CeO_2可诱导藻细胞合成超氧化物歧化酶(superoxide dismutase,SOD)等可溶性蛋白,以抵御纳米CeO_2的胁迫;但在高浓度时又会降低SOD活力;3)随着纳米CeO_2浓度的升高,藻细胞中丙二醛(malondialdehyde,MDA)含量显著增加,说明藻细胞中活性氧自由基(reactive oxygen species,ROS)过量积累,这将破坏藻细胞的膜结构与功能,使细胞遭受严重损伤。  相似文献   
378.
外循环气升式反应器中光合细菌处理味精废水的研究   总被引:9,自引:0,他引:9  
外循环气升式反应器(EALR)中球形红假单胞菌处理味精废水,能生产单细胞蛋白。在连续供气、KLa为242h^-1,HRT为12h,活性炭载体浓度为10g/L,进水BOD5为2750mg/L条件下,废水BOD5的去除率达到92%。载体增加反应器内生物量28%,SCP产率系数Y=0.59kg(cell)/(kg BOD5·d),是无载体组的2倍。EALR的生物负荷为1.68kg BOD5/(kg ML  相似文献   
379.
研究机体摄入浓缩铀235UO2F2时,对外周免疫器官脾淋巴细胞DNA合成和UDS的影响。观察发现,当摄入低剂量浓缩铀0.1μg/kg体重时,可刺激T淋巴细胞的转化增殖,刺激指数增升。低剂量位缩铀摄入水平在0.1~20μg/kg体重时,可使紫外线诱导的脾淋巴细胞UDS呈现明显刺激效应,增强对脾淋巴细胞DNA切除修复能力。当浓缩铀内污染水平进一步加大时,可使脾T、B淋巴细胞的DNA合成以及UDS都呈现明显抑制。  相似文献   
380.
Co/Al2O3催化剂上CH4的CO2重整反应研究   总被引:2,自引:0,他引:2  
通过研究不同Co负载量的Co/Al2O3催化剂对CH4的CO2重整剂合成气活性的影响,发现Co负载量为13%(Wt)的Co/Al2O3活性最好,考察了反应温度,空速,还原温度等对催化剂活性和产物中CO/H2比例的影响,结果表明反应温度升高,CH4的CO2的转化率均增加,但随空速的增加而降低,还原温度在400℃时催化剂显示出活性最好,产物中CO/H2的比例,随反应条件不同而略有增减。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号