首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   71篇
  国内免费   261篇
安全科学   10篇
废物处理   2篇
环保管理   442篇
综合类   471篇
基础理论   99篇
污染及防治   71篇
评价与监测   26篇
社会与环境   50篇
灾害及防治   15篇
  2023年   8篇
  2022年   21篇
  2021年   24篇
  2020年   21篇
  2019年   27篇
  2018年   39篇
  2017年   35篇
  2016年   22篇
  2015年   52篇
  2014年   48篇
  2013年   61篇
  2012年   78篇
  2011年   55篇
  2010年   48篇
  2009年   46篇
  2008年   57篇
  2007年   56篇
  2006年   68篇
  2005年   38篇
  2004年   29篇
  2003年   31篇
  2002年   29篇
  2001年   25篇
  2000年   14篇
  1999年   17篇
  1998年   15篇
  1997年   12篇
  1996年   6篇
  1995年   9篇
  1994年   11篇
  1993年   10篇
  1992年   5篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   17篇
  1981年   13篇
  1980年   11篇
  1979年   13篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1973年   4篇
  1972年   5篇
排序方式: 共有1186条查询结果,搜索用时 375 毫秒
391.
ABSTRACT: This research evaluated concentration data for selected water quality parameters in selected California urban separate storm sewer systems during storm event discharges and during dry weather conditions. We used existing monitoring data from multiple regulatory agencies and municipalities originally collected for compliance or local characterization, which allowed systematic assessment of seasonal patterns over a wide region. Long term mean concentration for most parameters in most streams was higher during storm discharges than during dry weather flows to at least 95 percent confidence in 20 of 45 comparative evaluations, and lower statistical confidence in 22 other comparisons. Some regional differences emerged: in four evaluated streams in the San Francisco Bay Area, total concentration of lead, copper and zinc were lower during dry weather than during storm flows to at least 99.9 percent confidence, with only one exception; while the other four evaluated California streams showed the same tendency, but to much lower statistical confidence.  相似文献   
392.
ABSTRACT: An 18-month field experiment was conducted to evaluate the effectiveness of grass filter strips in removing sediment and various nitrogen species from runoff. Runoff was collected from six 3.7 m wide experimental plots with 24.7 m long runoff source areas. Two plots had 8.5 m filters, two plots had 4.3 m filters, and two plots had no filters. Runoff was analyzed for total suspended solids (TSS), total Kjeldahl nitrogen (TKN),. filtered TKN (FTKN), NH4+-N, and NO3-N. The Mann-Kendall nonparametric test for trend (changes in filter effectiveness over time) indicated that there were no trends in the yields and concentrations of TSS, NO3--N, NH4-N, TKN, and FTKN for the 8.5 m filter over time. For the shorter 4.3 m filters, there were significant upward trends in TKN yield and downward trends in TSS, NH4-N, and FTKN concentrations, indicating that trapping efficiency may have started changing with time. The Kruskal-Wallis test indicated that the 8.5 m filters reduced median yields and concentrations of TSS and all N species, but the 4.3 m filters only reduced the median yields and concentrations of TSS, NH4+-N, TKN, and the median concentration of FTKN. The 8.5 and 4.3 m filters reduced contaminate yields and concentrations from 42 to 90 percent and from 20 to 83 percent, respectively.  相似文献   
393.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   
394.
ABSTRACT: The successful design of constructed wetlands requires a continuous supply of water or vegetation that can withstand drought conditions. Having a constant water source is the best alternative to insure species diversity throughout the season. Consequently, detention structure designs should be based on times between events as well as on hydrologic return periods, since between events is when most evaporation and infiltration losses are likely to occur. In arid or semi-arid environments, this is a difficult process because of long interevent times and seasonal changes in precipitation patterns. This discussion is predicated on the assumption that phytoplankton, epiphytic algae, and emergent vegetation require moist conditions to be effective at removing nutrients, metals and other pollutants. There are drought tolerant species of vegetation that can be used in constructed wetlands but it may take several days to re-establish the attached bacteria communities necessary for optimum pollutant removal. This paper examines a stochastic framework to examine the probability of extended dry periods based on historic rainfall data. The number of consecutive dry days is selected for a specified level of assurance. By multiplying this value by the sum of daily system losses, an overall pond volume can be determined that ensures a minimum depth of water. To illustrate the utility of the approach, the method is applied to a site in Spokane, Washington.  相似文献   
395.
We update the Wigington et al. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often in situations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.  相似文献   
396.
This study tests the applicability of the curve number (CN) method within the Soil and Water Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, surface runoff simulated using the CN method was compared with observed runoff in numerous rainfall‐runoff events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method generally performed well in simulating surface runoff in the studied watersheds (Nash‐Sutcliff efficiency [NSE] > 0.7; percent bias [PBIAS] < 32%). Moreover, there was no difference in the performance of the CN method in simulating surface runoff under low and high antecedent rainfall (PBIAS for both antecedent conditions: ~30%; modified NSE: ~0.4). It was also found that the method accurately estimated surface runoff at high rainfall intensity (e.g., PBIAS < 15%); however, at low rainfall intensity, the CN method repeatedly underestimated surface runoff (e.g., PBIAS > 60%). This was possibly due to low infiltrability and valley bottom saturated areas typical of many tropical soils, indicating that there is scope for further improvements in the parameterization/representation of tropical soils in the CN method for runoff estimation, to capture low rainfall‐intensity events. In this study the retention parameter was linked to the soil moisture content, which seems to be an appropriate approach to account for antecedent wetness conditions in the tropics.  相似文献   
397.
为减少环湖公路路面径流对洱海水质的影响,该研究选用土壤、锯末、沙子、砾石分层装填的生态型的路面径流收集、净化和输送系统-生态种植槽(其中混合填料层锯末与沙子的配比设置3种比例1∶3、1∶4、1∶5),研究该装置对模拟雨水的净化效果,并寻求最佳填充方式.结果表明,3组种植槽适合植物移栽、自然挂膜、低污染负荷启动方式;能稳定有效地去除COD、SS.运行期COD的平均出水水质优于地表水Ⅴ类水质,SS的平均去除率均高于80%.不同混合填料比种植槽对污水中COD的净化效果从高到低排序依次为:1∶5(锯末∶沙子)>1∶4(锯末∶沙子)>1∶3(锯末∶沙子),方差分析显示,3组种植槽系统间COD、SS去除率无差异(P>0.05),考虑到锯末∶沙子为1∶5时的渗透效果差,故推荐锯末∶沙子为1∶4的种植槽供后续示范工程选用.  相似文献   
398.
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10?2, 1.87 × 10?3 and 5.70 × 10?4, respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10?4 and 1.05 × 10?4, respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.  相似文献   
399.
This study presents new data‐driven, annual estimates of the division of precipitation into the recharge, quick‐flow runoff, and evapotranspiration (ET) water budget components for 2000‐2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick‐flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick‐flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick‐flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first‐order estimates of these quantities across the CONUS, even where field measurements are sparse.  相似文献   
400.
Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15-32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号