首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   8篇
  国内免费   59篇
安全科学   1篇
废物处理   3篇
环保管理   1篇
综合类   76篇
基础理论   55篇
污染及防治   33篇
评价与监测   1篇
  2022年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   6篇
  2014年   6篇
  2013年   24篇
  2012年   14篇
  2011年   6篇
  2010年   4篇
  2009年   12篇
  2008年   2篇
  2007年   8篇
  2006年   3篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
排序方式: 共有170条查询结果,搜索用时 62 毫秒
71.
本文综述了PCBs在各种溶剂中的紫外光化学反应特性和降解途径 :PCB的光化学反应以氢取代氯的脱氯反应为主 ,除此之外 ,在水或醇等极性溶液中 ,还存在羟基化反应 ;PCB的光化学反应活性与其氯原子的数量和取代位置有关。文章最后还简述了光降解在治理受PCB污染土壤方面的应用  相似文献   
72.
Abstract

In 1979 and 1980, outdoor artificial ponds were treated with 14C‐pennethrin (labelled at either the cyclopropyl or methylene position) at 0.028 kg/ha (15 ug/L). Uptake of permethrin by duckweed and hydrosoil was monitored by direct combustion, TLC‐autoradiography, HPLC, and liquid scintillation counting. Rapid loss of permethrin from the waiter coincided with the detection of five degradation products in the water at concentrations below 2.0 ug/L. The products were cis‐ and trans‐cyclopropyl acid, phenoxybenzoic acid, and phenoxybenzyl alcohol, and an unknown non‐cleaved product of permethrin. Permethrin was readily sorbed by duckweed but was not persistent. Permethrin residues in the hydrosoil, which was the major sink for permethrin added to the ponds, were persistent and were detected at 420 days post‐treatment. Cis‐permethrin was more persistent in the hydrosoil than the trans‐permethrin. The results indicated that permethrin in water was short‐lived at an application rate of 15 ug/L because of the rapid degradation of permethrin in the water and sorption of permethrin by the hydrosoil and vegetation. However, at one year post‐treatment, permethrin residues were still detected in the hydrosoil at 1.0 ug/kg.  相似文献   
73.
Goal, Scope and Background The use of polybrominated diphenyl ethers (PBDEs) as flame retardants increases the risk for emissions of other brominated compounds, such as polybrominated dibenzodioxins (PBDDs) and dibenzofurans (PBDFs). The large homology in structure of PBDD/Fs and mechanism of toxic action, i.e. the capacity to activate the Ah receptor (AhR) pathway, compared to their well-studied chlorinated analogues, justifies a raised concern to study the environmental levels and fate of these compounds. Decabromodiphenyl ether (decaBDE) is the most widely used PBDE today. Studies on photolytic debromination of decaBDE in organic solvents have shown debromination of decaBDE, as well as formation of PBDFs. However, little is known about the transformation mechanisms and there are only scarce data on photoproducts and PBDE transformation in environmentally relevant matrices. In this study, mechanism-specific dioxin bioassays were used to study photolytic formation of AhR agonists in toluene solutions of decaBDE. In addition, the influence of irradiation time and UV-light wavelength on the formation was studied. PBDE congener patterns and presence of PBDD/Fs were analysed. Further, AhR agonists were analysed in agricultural soils contaminated with PBDEs. Soils were also exposed to UV-light to study changes in AhR agonist levels. Methods Toluene solutions of decaBDE were irradiated using three different spectra of UV-light, simulating UV-A (320-400 nm), UV-AB (280-400 nm), and UV-ABC (250-400 nm). Additionally, decaBDE solutions were exposed to narrow wavelength intervals (10 nm bandwidth) with the central wavelengths 280, 290, 300, 310, 320, 330, 340, 350, 360 nm. AhR agonists in decaBDE solutions were analysed with two different bioassays, the chick embryo liver-cell assay for dioxins (Celcad) and the dioxin responsive, chemically activated luciferase expression assay (DR-Calux). Also, the decaBDE solutions were analysed with LRGC-LRMS to obtain PBDE congener patterns for breakdown of decaBDE, and with HRGC-HRMS, for presence of PBDD/Fs. Four soils were exposed to UV-AB light, under both dry and moist conditions. Levels of AhR agonists in soil extract fractions, before and after UV-exposure, were analysed with the DR-Calux. Results and Discussion Significant levels of photoproducts able to activate the AhR pathway, up to 31 ng bio-TEQ/ml, were formed in UV-exposed decaBDE solutions. The transformation yield of decaBDE into AhR agonists was estimated to be at the 0.1%-level, on a molar basis. The net formation was highly dependent on wavelength, with the sample irradiated at 330 nm showing the highest level of dioxin-like activity. No activity was detected in controls. PBDE analysis confirmed decaBDE degradation and a clear time-dependent pattern for debromination of PBDE congeners. AhR agonist effect in the recalcitrant fractions of the soils corresponded to the levels of chemically derived TEQs, based only on chlorinated dioxin-like compounds in an earlier study. It was concluded that no significant levels of other AhR agonists, e.g. PBDFs, were accumulated in the soil. UV-light caused changes in AhR-mediated activity in the more polar and less persistent fractions of the soils, but it is not known which compounds are responsible for this. Recommendations and Perspective . The laboratory experiments in this study show that high levels of AhR agonists can be formed as photoproducts of decaBDE and it is important to elucidate if and under which conditions this might occur in nature. However, soil analysis indicates that photoproducts of PBDE do not contribute to the accumulated levels of persistent dioxin-like compounds in agricultural soil. Still, more data is needed to fully estimate the environmental importance of PBDE photolysis and occurrence of its photoproducts in other environmental compartments. Analysis with dioxin bioassays enabled us to gather information about photoproducts formed from decaBDE even though the exact identities of these compounds were not known. Conclusion Bioassays are valuable for studying environmental transformation processes like this, where chemical analysis and subsequent toxicological evaluation requires available standard compounds and information on toxicological potency. The use of bioassays allows a rapid evaluation of toxicological relevance.  相似文献   
74.
烯啶虫胺的水解与光解行为研究   总被引:1,自引:0,他引:1  
张传琪  胡静  王鸣华 《生态环境》2011,20(11):1735-1738
通过室内模拟实验研究了烯啶虫胺在不同pH值和温度下的水解动态及其在水和有机溶剂中的光解特性和影响因素。结果表明:烯啶虫胺在酸性和中性条件下不易水解,而在碱性条件下水解较快。烯啶虫胺的水解速率随温度升高而增加,平均温度效应系数为2.34。烯啶虫胺水解反应的活化能和活化焓与温度之间无明显相关性,而活化熵与温度表现出较好的相关性。在不同光源照射下,烯啶虫胺在水溶液中的光解速率有显著的差异,在高压汞灯、自然光和氙灯下的光解半衰期分别为42.3 s、6.9 min和55 min;烯啶虫胺在甲醇中的光解速率大于丙酮中的光解速率;烯啶虫胺的光解速率随初始质量浓度的升高而减慢;pH值对烯啶虫胺的光解影响较小。研究结果为烯啶虫胺的环境风险评价提供了科学依据。  相似文献   
75.
按照《化学农药环境安全评价试验准则》的规定并参考美国EPA导则,采用室内模拟试验方法,研究了绿草定-2-丁氧基乙酯在环境中的降解特性.结果表明,25℃时绿草定-2-丁氧基乙酯在pH =4、7、9缓冲溶液中的水解半衰期分别为533 d、21.8 d、<1 d;高温、碱性条件下绿草定-2-丁氧基乙酯极易水解,其水解反应速率随反应介质pH值的增大、反应温度的升高而增大;初步确定绿草定-2-丁氧基乙酯分子在水溶液中生成的水解产物主要是绿草定.绿草定-2-丁氧基乙酯在土壤中迅速降解,酸性土壤中其降解趋势遵循一级动力学模型,中性和碱性土壤中其降解动态不能用一级动力学模型进行简单的拟合;绿草定-2-丁氧基乙酯在土壤中的降解形式主要为化学水解作用,降解生成绿草定和丁氧基乙醇;土壤pH和有机质含量是影响其土壤降解速率的主要因素,pH和有机质含量越高,其土壤降解速率越快.在人工光源氙灯条件下,绿草定-2-丁氧基乙酯在水溶液和土壤表面的光化学降解均符合一级动力学反应,不同介质对绿草定-2-丁氧基乙酯光解的影响差异显著.  相似文献   
76.
77.
Photolysis of isoprothiolane (di-isopropyl 1,3-dithiolan-2-ylidenemalonate) was studied as a thin film on glass surface, soil surface, and plant surface. Three photoproducts, namely 1,3-dithiolan-2-ylidenepropane, 1,3-dithiolan-2-ylidenemalonic acid, and 1,3-dithiolan-2-ylidenemethane have been identified on the basis of GC-MS method. The major route of photodegradation of this compound is through the de-esterification process, followed by de-carboxylation and rearrangement. The rate of photodegradation in all cases followed first-order kinetics with a statistically significant correlation coefficient.  相似文献   
78.
The kinetics of famotidine (FAM) transformation under the influence of various factors, important from the environmental point of view, was investigated in aqueous solutions. The degradation processes using UV, H2O2, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied. Direct photolysis and H2O2-assisted photolysis showed a pseudo-first-order kinetics, while the Fenton and the photo-Fenton processes fit second-order kinetics. The provided experiments proved a high resistance of FAM to direct photolysis. Its stability depends highly on the pH of the reaction solutions. The rate of FAM direct photolysis in acidic solutions was almost negligible. The reaction rate of FAM photolysis at pH 8–9 was 3.7 × 10?3 min?1 with DT50 about 3 h 7 min. It was found that the presence of H2O2 in the reaction environment enhances the rate of photolysis of FAM. The observed rates of reaction were 5.1 × 10?3 min?1 and 3.7 × 10?3 min?1 in acidic and basic solutions, respectively. The used Fenton systems appeared to be the most efficient in FAM removal. The rate of reaction depends on concentration of Fe2+ and H2O2. It was observed that the presence of UV-light enhances the reaction rate by two to six times in comparison to the classical Fenton system. Additionally, FAM behavior in natural water under solar irradiation was examined. The irradiation experiments were carried out in batch experiments with simulated sunlight.  相似文献   
79.
Photodegradation products of the herbicide Goal active ingredient were obtained with a xenon lamp and analyzed using direct inlet mass spectrometry, MS/MS and GC/MS. A number of products were identified and their generation pathways were established to be mainly Ar—O bond cleavage, dechlorination and photocyclisation. The latter process gives chlorinated and unchlorinated dibenzofurans some of which may be toxic.  相似文献   
80.
2013~2014年北京市NO2时空分布研究   总被引:2,自引:0,他引:2  
根据2013~2014年北京市NO2监测数据,对比分析了全年及重污染日NO2时空分布特征.结果表明:2013年NO2平均浓度为56μg/m3,2014年北京市NO2年均浓度为56.7μg/m3.年均及重污染日NO2月均浓度均呈波浪型分布,日变化呈双峰型分布;空间分布上北部及西部山区NO2浓度明显低于中心城区及南部地区. NO2浓度与PM2.5、CO、NO呈正相关关系,与O3、OX无明显相关性;全年NO2光解速率峰值平均在0.105/min左右,重污染日光解速率峰值平均在0.026/min左右;全年及重污染期间,氮氧化速率分别为0.142±0.061、0.190±0.036;高浓度NO2既有利于O3生成,又对重污染的形成起到了促进作用;重污染日特定条件下北京市NO2的两种转化机制以转化为NO3-过程为主导.经计算2000~2014年北京市机动车的保有量与NO2浓度的相关系数R为-0.84,机动车NOx排放量对北京市NO2浓度的变化有显著的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号