首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   217篇
  国内免费   493篇
安全科学   31篇
废物处理   11篇
环保管理   181篇
综合类   773篇
基础理论   1130篇
污染及防治   124篇
评价与监测   76篇
社会与环境   112篇
灾害及防治   3篇
  2024年   4篇
  2023年   44篇
  2022年   71篇
  2021年   85篇
  2020年   97篇
  2019年   79篇
  2018年   69篇
  2017年   92篇
  2016年   96篇
  2015年   115篇
  2014年   98篇
  2013年   143篇
  2012年   120篇
  2011年   161篇
  2010年   118篇
  2009年   128篇
  2008年   130篇
  2007年   147篇
  2006年   102篇
  2005年   114篇
  2004年   78篇
  2003年   63篇
  2002年   42篇
  2001年   31篇
  2000年   35篇
  1999年   25篇
  1998年   21篇
  1997年   19篇
  1996年   25篇
  1995年   16篇
  1994年   13篇
  1993年   14篇
  1992年   11篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2441条查询结果,搜索用时 15 毫秒
31.
ABSTRACT: Subterranean ecosystems harbor globally rare fauna and important water resources, but ecological processes are poorly understood and are threatened by anthropogenic stresses. Ecosystem analyses were conducted from 1997 to 2000 in Cave Springs Cave, Arkansas, situated in a region of intensive land use, to determine the degree of habitat degradation and viability of endangered fauna. Organic matter budgeting quantified energy flux and documented the dominant input as dissolved organic matter and not gray bat guano (Myotis grisescens). Carbon/nitrogen stable isotope analyses described a trophic web of Ozark cavefish (Amblyopsis rosae) that primarily consumed cave isopods (Caecidotea stiladactyla), which in turn appeared to consume benthic matter originating from a complex mixture of soil, leaf litter, and anthropogenic wastes. Septic leachate, sewage sludge, and cow manure were suspected to augment the food web and were implicated in environmental degradation. Water, sediment, and animal tissue analyses detected excess nutrients, fecal bacteria, and toxic concentrations of metals. Community assemblage may have been altered: sensitive species‐grotto salamanders (Typhlotriton spelaeus) and stygobro‐mid amphipods—were not detected, while more resilient isopods flourished. Reduction of septic and agricultural waste inputs may be necessary to restore ecosystem dynamics in this cave ecosystem to its former undisturbed condition.  相似文献   
32.
长江铜陵段表层水中重金属含量及存在形态分布研究   总被引:11,自引:0,他引:11  
通过测定长江铜陵段枯、丰水期江水中cu、Pb、Zn和cd不同形态的含量,分析了4种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。结果表明,长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异:丰水期时,各金属会被悬浮物以不同的方式携带进入水体中,cu、zn、Pb以活跃态和稳定态为主,Cd以活跃态为主;枯水期时,Zn主要以溶解态和稳定态为主,Pb以稳定态方式被携带,而80%的Cu、Cd是以溶解态形式存于水中。悬浮物(丰水期)对重金属的吸附能力大小顺序为Pb>Cu>Zn>Cd。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。  相似文献   
33.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   
34.
Sagoff [Journal of Agricultural and Environmental Ethics 18 (2005), 215–236] argues, against growing empirical evidence, that major environmental impacts of non-native species are unproven. However, many such impacts, including extinctions of both island and continental species, have both been demonstrated and judged by the public to be harmful. Although more public attention has been focused on non-native animals than non-native plants, the latter more often cause ecosystem-wide impacts. Increased regulation of introduction of non-native species is, therefore, warranted, and, contra Sagoff’s assertions, invasion biologists have recently developed methods that greatly aid prediction of which introduced species will harm the environment and thus enable more efficient regulation. The fact that introduced species may increase local biodiversity in certain instances has not been shown to result in desired changes in ecosystem function. In other locales, they decrease biodiversity, as they do globally.  相似文献   
35.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   
36.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
37.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   
38.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
39.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   
40.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号