首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5348篇
  免费   442篇
  国内免费   1531篇
安全科学   288篇
废物处理   770篇
环保管理   939篇
综合类   3586篇
基础理论   573篇
环境理论   2篇
污染及防治   739篇
评价与监测   302篇
社会与环境   114篇
灾害及防治   8篇
  2024年   3篇
  2023年   51篇
  2022年   130篇
  2021年   153篇
  2020年   167篇
  2019年   142篇
  2018年   161篇
  2017年   187篇
  2016年   263篇
  2015年   273篇
  2014年   496篇
  2013年   475篇
  2012年   461篇
  2011年   425篇
  2010年   314篇
  2009年   332篇
  2008年   294篇
  2007年   370篇
  2006年   396篇
  2005年   321篇
  2004年   264篇
  2003年   266篇
  2002年   216篇
  2001年   200篇
  2000年   196篇
  1999年   146篇
  1998年   120篇
  1997年   91篇
  1996年   86篇
  1995年   67篇
  1994年   65篇
  1993年   52篇
  1992年   35篇
  1991年   20篇
  1990年   13篇
  1989年   10篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
  1971年   3篇
  1970年   1篇
排序方式: 共有7321条查询结果,搜索用时 281 毫秒
981.
全球环境基金(GEF)"通过环境无害化管理减少电器电子产品的生命周期内持久性有机污染物和持久性有毒化学品(POPs/PTS)的排放全额示范项目"湖北省作为项目示范省之一.三家废弃电器电子产品拆解企业,分别开展了废弃电器电子产品拆解技术示范、湿法废弃印刷电路板处置BAT/BEP技术示范、利用再生铅连续熔炼炉协同处置阴极射线管含铅锥玻璃项目技术示范.电子废弃物全自动化分类与拆解生产线,为电子废弃物绿色循环与资源化提供了示范模式.  相似文献   
982.
“无废城市”建设已经成为应对城市固体废物(以下简称“固废”)管理挑战的国际趋势,我国也启动了“无废城市”建设试点工作。本文介绍了国际“无废城市”实践的背景和发展趋势,对我国和其他高收入国家的“无废城市”相关政策和具体实施方案进行了对比分析。分析结果表明,“无废城市”的推进政策与实施措施存在国别差异,我国的“无废城市”采纳了“问题导向”的推进策略,而高收入国家则是“目标导向”。最后对进一步推进我国“无废城市”建设试点工作提出了四点建议。  相似文献   
983.
混汞法是一种设备简单、操作简便且应用历史悠久的提金方法 ,在世界范围内得到了普遍使用 ,同时也导致了严重的汞污染。本文介绍了混汞法的流程以及汞的释放过程和释放因子 ;综述了应用混汞法提金的不同国家和地区 ,对由此引发的大气、水体、生物 (包括人体 )和土壤汞污染的研究现状 ,并讨论了采金地区的环境管理政策  相似文献   
984.
Artisanal and small-scale gold mining (ASGM) is the principal anthropogenic activity that globally contributes to overloading our environment with mercury. Although the Minamata Convention, led by the United Nations, is a crucial instrument to eliminate its use progressively, novel approaches to accelerate this difficult transition are welcome. This article proposes a framework for policy-making or improvement, fostering the enforcement of mercury elimination through the lens of the 17 Sustainable Development Goals (SDGs), focusing on the excluded artisanal and small-scale gold miners and their dependents. We move forward with a literature review of the Artisanal and Small Mining topic, taking each SDG as a unit of analysis. Understanding the problem as a puzzle of four sets of pieces, namely: (1) social, (2) environmental, (3) economic, and (4) institutional, the paper offers potential opportunities for the decision-makers and practitioners to accelerate the substitution of this heavy metal and develop sustainable futures for the ASGM communities. We conclude by proposing a pragmatic framework that synthesizes the means, actions, and ends to accelerate a sustainable transition.  相似文献   
985.
Municipal solid waste (MSW) is one of the most well-known biomass resources that can be utilized to produce renewable energy. Numerous countries are plagued by the proliferation of waste, particularly organic waste that can be utilized for energy recovery. Palestine suffers from inefficient solid waste management, and only recently have a few projects focused on bioenergy production been implemented. Throughout the years, the city of Tulkarm experiences power outages which cause a challenge to the Palestine Technical University-Kadoorie campus in Tulkarm. Thus, the possibility of energy recovery from the organic portion in Palestine Technical University-Kadoorie was evaluated. The analysis of an economic impact included discussions of a number of economic aspects, including Levelized cost of energy, internal rate of return, present worth, annual worth, and payback period. On the other hand, a carbon dioxide savings analysis and gas emission were evaluated. The outcomes of the energy optimization demonstrated that the suggested system could supply the institution with an average of roughly 7 MWh of electrical energy. According to the economic study, this project offers 0.25 million dollars in present value, 0.144 million dollars in annual value, a 13 percent internal rate of return, a payback period of 6 years, and a levelized cost of energy of 0.11 dollars for each kWh generated. Additionally, the environmental assessment revealed that this system might reduce CO2 emissions by around 8,343,778 tons. For effective waste management, energy recovery, and emission reduction, it is advised to implement anaerobic digestion technology.  相似文献   
986.
The increase in animal and agro-industrial production must be accompanied by the development of appropriate waste and by-product management strategies. Anaerobic digestion is a promising approach to recycle these wastes and reintegrate them into the economic production cycle of biogas and biofertilizer. In order to improve the performance of the anaerobic mesophilic digestion of abundant agro-industrial wastes constituted by potato peel (PP), and poultry waste (PW) and study the contribution of bovine bone meal (BB) as additive rich in phosphorus, which can help to neutralize the acidity of the substrate. The 10-point simplex-centroid design and the isoresponse surfaces strategy were used. This study demonstrated that in mesophilic bio-digestion, the using bovine bones in admixture with agroindustrial residue provided for the proper balance of chemical components required for proliferation of microbiological agent of bioconversion, which also resulted in an increase in biogas production capacity. The best formula was so composed by 66.67% bovine bone, 16.67% potatoes peel, and 16.67% poultry waste. The stability was achieved here after only 12 days. The digestate generated from it was fulfilled with the microbiological and chemical requirements for safety defined by the NF U44-551 standard. Germination test revealed that this optimal produced digestate, did not hinder growth, in fact, almost 85% of seed was germinated. Finally, fertilization experiments prove that this digestate can boost the growth of bell pepper (Capsicum annuum).  相似文献   
987.
Biohythane production via single-stage anaerobic digestion (AD) is an effective way for sustainable energy recovery from lignocellulosic biomass. In this paper, biohythane was produced through the AD process from pineapple peel waste substrate using purely cultured Methanosarcina mazei with the enhancement of palm oil mill effluent (POME) sludge as the inoculum. This study focuses on the effects of the lignocellulosic pre-treatment method, the addition of POME sludge into M. mazei culture medium as inoculum, and various operational conditions (food to microorganisms (F/M) ratios, temperature, pH) on gas production performances. The experimental results indicate that these parameters influenced the efficiency of biohythane production by producing the peak maximum biohythane production rate values (HPRmax) and (MPRmax), H2:CH4 = 1.93:0.67 L/L-d, and biohythane yield (HY) and (MY), H2:CH4 = 1.18:0.55 mL/L-substrate. This study demonstrates that biohythane gas (H2 + CH4 + CO2) production from pineapple waste can be accelerated by M. mazei only with the enhancement of POME sludge through single-stage AD system under mesophilic batch process conditions.  相似文献   
988.
Waste-to-energy is a promising approach to face the current challenge of waste overproduction in Reunion Island, a French territory. In this particular context of an isolated and tropical territory, it is essential to study the properties of potential feedstocks to choose the most appropriate conversion process. This article reports on the composition of Residual Household Waste from Reunion Island and its physico-chemical parameters. Twelve representative samples of Residual Household Waste were subjected to thermal and elemental analysis. The results showed that their composition had a significant influence on the physico-chemical properties, including calorific value. Residual Household Waste from the selective sorting (rich in wood, plastic, and sanitary textiles) as well as dry mixed RHW are the most interesting for energy recovery. Due to their high volatile matter and high carbon content, and their low moisture content, these types of waste have a high calorific value exceeding 18 MJ/kg. Furthermore, the RHW sample comply with the environmental and health criteria applied by French regulations concerning halogen and heavy metal. Thus, it seems that Residual Household Waste can be an alternative to conventional fuels used in incineration or pyro-gasification processes. However, the study also points the need for a pre-treatment process for these wastes. Indeed, it is necessary to sort them correctly in order to avoid the risks of pollution and important maintenance. And more importantly, drying beforehand is unavoidable to improve combustibility and obtain optimal energy conversion.  相似文献   
989.
The estimation of leachate quantities produced in landfills is necessary to dimension the treatment plants allowing to reduce the polluting load of these effluents and consequently avoid their negative impacts on the environment. Different leachate quantification methods were used in this study to assess the leachate volume produced at the Oum Azza landfill. The water balance method give comparable estimations of leachate production to the Ouled Berjal landfill ratio. The first method showed average values between 487 and 495 m3/day for 2015, 2018, and 2019, and at the same time, the second method gave values between 470 and 477 m3/day for the same years. In contrast, the World Bank ratio showed high values that vary between 2260 and 2295 m3/day for 2015, 2018, and 2019. The on-site data and the statistical analysis showed us that the World Bank ratio is not adapted for the estimation of the leachates produced in Oum Azza landfill, while the water balance and the ratio of Ouled Berjal landfill allowed to give comparable results to reality.  相似文献   
990.
This paper emphasizes the significant challenges facing the sustainable environment, including managing and handling plastic waste and reducing carbon footprints. To tackle these challenges, it is essential to identify people's awareness levels of waste handling techniques and their pro-environmental behaviors. The study focuses on Guwahati, one of the most important cities in Northeast India, which generates increasing plastic waste daily. The paper aims to identify the factors contributing to the reduction of carbon footprints resulting from plastic waste management activities. The data collected from 1326 respondents was analyzed using factor analysis, and the reliability of the dataset was confirmed using Cronbach's alpha (0.84 for the awareness level of waste management techniques and 0.780 for the prevalent mode of plastic waste management techniques). KMO (0.796), Bartlett's test of sphericity (p < 0.001), and determinant score (0.019) were used to assess the data adequacy and factorability of the dataset, and the results were found to be satisfactory. Principal component analysis, exploratory factor analysis, and varimax orthogonal rotation method were used to identify high-loaded factors by reducing the number of variables. The results showed that two highly loaded components, namely awareness level of waste management techniques (AWMT) and prevalent mode of plastic waste management techniques (PWMT), explained 27.53% and 24.34% of the total variance, respectively, with eigenvalues of 3.35 and 2.88. The regression model confirmed the statistical significance of these factors (p < 0.001) and their relationship with the dependent variable, greenhouse reduction (GHGR). The study proposes that minimizing carbon footprints in the environment can be achieved by focusing on a limited number of controllable factors such as AWMT and PWMT. This study provides valuable insights to the authorities in controlling waste generation and achieving a pollution-free environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号