首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5675篇
  免费   660篇
  国内免费   2716篇
安全科学   374篇
废物处理   180篇
环保管理   324篇
综合类   5862篇
基础理论   805篇
污染及防治   1207篇
评价与监测   205篇
社会与环境   82篇
灾害及防治   12篇
  2024年   95篇
  2023年   270篇
  2022年   373篇
  2021年   445篇
  2020年   320篇
  2019年   377篇
  2018年   243篇
  2017年   225篇
  2016年   310篇
  2015年   379篇
  2014年   548篇
  2013年   388篇
  2012年   419篇
  2011年   466篇
  2010年   384篇
  2009年   439篇
  2008年   395篇
  2007年   370篇
  2006年   402篇
  2005年   333篇
  2004年   301篇
  2003年   280篇
  2002年   193篇
  2001年   173篇
  2000年   134篇
  1999年   130篇
  1998年   116篇
  1997年   119篇
  1996年   83篇
  1995年   81篇
  1994年   69篇
  1993年   44篇
  1992年   42篇
  1991年   38篇
  1990年   30篇
  1989年   30篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
排序方式: 共有9051条查询结果,搜索用时 15 毫秒
401.
微生物燃料电池(MFC)可在阴极实现反硝化、短程反硝化和同步硝化反硝化并产生电能,但在MFC阴极实现同步短程硝化反硝化的研究尚未见到报道。为了探讨MFC阴极同步短程硝化反硝化工艺的性能,将双室曝气阴极MFC与A/O脱氮工艺结合处理人工模拟低碳氮比废水。通过静置运行15 d使得MFC阴极室亚硝态氮得以积累,氨氧化菌得以富集。随即改为连续运行后第21天成功启动同步短程硝化反硝化MFC;阴极出水氨氮浓度为0.3 mg/L,亚硝态氮浓度为15.9 mg/L,硝态氮浓度为0.6 mg/L,亚硝化率达到95%以上,阴极电极自养反硝化去除率达到50%以上,COD去除率达到85%以上。结果表明,将MFC与同步短程硝化反硝化工艺结合,通过阴极室中氧气得电子获得高p H,可以强化同步短程硝化反硝化工艺,完成生物脱氮的同时回收电能,并具有减少外加碱度的优势。  相似文献   
402.
为探讨Cu2+、p H和流速对固定化斜生栅藻去除畜禽废水中NH+4-N、TP效果的影响,在实验室条件下模拟实际污水处理过程,并采用正交实验方案对结果进行分析。结果表明低质量浓度Cu2+(0~0.05 mg/L)改善藻的净化效果,高质量浓度Cu2+(0.50~5.00 mg/L)抑制藻的净化效果;在p H较高的条件下(p H=9),固定化斜生栅藻的净化效果明显提高;流速对结果没有明显影响。通过正交实验,得出固定化斜生栅藻去除畜禽废水中NH+4-N、TP的优化条件如下:Cu2+质量浓度为0.05 mg/L,p H为9,流速为0.3 m/s。此时NH+4-N去除率为96.11%,TP去除率为97.53%。  相似文献   
403.
为了研究不同好氧预处理方式对餐厨垃圾厌氧消化产甲烷的影响,通过建立3个模拟厌氧生物反应器,研究了传统厌氧生物反应器C1、上层好氧预处理-厌氧生物反应器C2和底部好氧预处理-厌氧生物反应器C3 3种不同操作条件下的产甲烷过程.结果表明,挥发性有机酸的累积使C1始终处于产甲烷滞后阶段;而C2、C3的好氧预处理通过加快易水解酸化组分和过量挥发性有机酸的好氧降解,有效缓解了酸性抑制,产甲烷滞后时间明显缩短至10 d内.第32天C2停止上层曝气后,在27 d内甲烷浓度达到了50%以上,同时,产甲烷速率迅速上升,并在第81天可达到峰值773 mL/(kg·d).C3在第11天停止底部曝气后,虽然经过22 d的时间甲烷浓度即上升至50%,但之后产甲烷速率经历回落阶段后再次逐渐上升,在实验结束时仅达到517 mL/(kg·d).上层曝气的好氧预处理方式所需曝气时间相对较长,但其产甲烷启动快,与底部曝气相比,其后期的甲烷化过程更稳定并可达到较高的产甲烷速率.  相似文献   
404.
从不同反应器筛选、鉴别好氧反硝化菌   总被引:7,自引:5,他引:2       下载免费PDF全文
采用2个序批式反应器A和B,以硝态氮为唯一氮源,采用间歇曝气,以驯化、富集耐氧脱氮污泥.反应器A,其pH约为6.3,ρ(DO)为2.2~6.1 mg/L,碳氮比(ρ(C)/ρ(N),ρ(C)以ρ(CODCr)计)约为9;反应器B,其pH约为6.8~7.8,ρ(DO)为 2.2~3.0 mg/L,ρ(C)/ρ(N)约为15.2个反应器的ρ(NO3--N)均保持为80 mg/L.当2个反应器的总氮去除率达到60%以上,则认为完成好氧反硝化菌的富集.从2个反应器中共筛选得到20株BTB阳性菌,其中8株菌株的DNA样品经PCR成功扩增,进行16S rRNA测序.测序结果提交GenBank进行Blast同源性检索,并分析比对鉴别,判断8株菌株分属于假单胞菌(Pseudomonas),戴尔福特菌(Delftia),草螺菌(Herbaspirillum)和丛毛单胞菌(Comamonas)菌属.反硝化性能测定证实8株菌株均为好氧反硝化菌.   相似文献   
405.
入湖污染河流对受纳湖湾水质的影响   总被引:17,自引:2,他引:15       下载免费PDF全文
为研究滇池重污染湖湾——福保湾的污染现状及入湖污染河流对湖湾水质的影响,并为福保湾污染底泥固化技术示范工程提供基础数据,在福保湾布设15个采样点,采集并分析表层水中营养元素氮、磷的含量. 结果表明,福保湾氮、磷等营养元素含量的空间分布规律明显,入湖河流污染负荷对湖湾水质有较大影响. 河口附近水域水质较差,ρ(TP)高达0.7 mg/L,以不溶的颗粒态磷为主;ρ(TN)为7 mg/L左右,其中的50%以上以NH3-N的形态存在. 随与河口间距离的增加,上覆水中ρ(TN)和ρ(TP)逐渐降低. 在距河口300 m的水域范围内,ρ(TN)和ρ(TP)的空间分布规律与A.B.卡拉乌舍夫扩散模型计算结果相符.   相似文献   
406.
浮萍与水花生净化N、P污染性能比较   总被引:11,自引:0,他引:11  
以经筛选得到的本地优势浮萍和水花生为研究对象,通过设置浮萍、水花生单种和浮萍-水花生混养等三种体系,考察了其对生活污水和稀释的牛场厌氧废水N、P的净化效果。结果表明,浮萍、水花生单种体系和浮萍-水花生混养体系对供试污水TN、TP的最大去除率分别为95.2%、91.1%;80.7%、75.4%和86.4%、86.4%。低有机污染条件下,浮萍吸收N、P的能力优于水花生,但其对COD的去除能力逊色于水花生;当水体有机污染程度较高时,可通过将浮萍和水花生混养,建立共生系统,以高效、稳定地去除污染物。  相似文献   
407.
影响好氧颗粒污泥性质的因素多且复杂,具有灰色系统的特点.应用了灰色关联分析方法对好氧颗粒污泥的重要参数污泥体积指数(SVI)、沉降速率、颗粒粒径和污泥浓度(MLSS)进行了关联影响分析.结果表明:对颗粒污泥SVI的影响顺序为沉降速率>颗粒粒径> MLSS,说明沉降速率对活性污泥的形态转变和颗粒化过程的作用最明显,SVI可作为评判颗粒化进程的一个理想指标;沉降速率对MLSS的影响最弱;颗粒粒径的最佳值为1.3~1.5 mm,此时,颗粒粒径对SVI降低的贡献最大,从而使颗粒污泥的沉降性能得到很大改善,并且使MLSS达到最大.  相似文献   
408.
青藏高原地区准好氧填埋单元试验研究   总被引:2,自引:0,他引:2  
为研究准好氧填埋技术在海拔高、空气稀薄、气温低、昼夜温差大、蒸发强、降雨少的青藏高原地区的适用性,在青藏高原不冻泉地区开展了为期14个月的准好氧填埋单元试验研究.试验结果表明,准好氧填埋单元的渗滤液COD浓度由3307 mg/L降低到403 mg/L,氨氮由135.4 mg/L降低到0.04 mg/L,渗滤液量大幅减少.研究为青藏高原地区提供了一种垃圾处理方式.  相似文献   
409.
厌氧-好氧工艺处理制药废水的中试研究   总被引:3,自引:0,他引:3  
将由厌氧折流板反应器(ABR)、移动床生物膜反应器(MBBR)和膜生物反应器(MBR)组合而成的厌氧-好氧工艺用于处理制药废水的中试研究.试验结果表明,当原水SS平均值为1000 mg/L,COD为10 000 mg/L,NH3-N为500 mg/L时,出水浊度、COD和NH3-N分别为3 NTU、500 mg/L以及10 mg/L以下,去除率分别为98%、95%和98%以上.  相似文献   
410.
高强度好氧反应器(jet-loop compact reactor,JLCR)采用射流曝气强制溶氧.对JLCR处理制药废水进行了试验研究,考察了JLCR的运行效果、反应器的启动与污泥驯化、抗冲击负荷性能以及污泥沉降性能等.初步结果表明,该系统启动时间较短,运行稳定,COD去除效果较好.进水COD为8000 mg/L左右时,去除率达到80%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号