首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   40篇
  国内免费   227篇
安全科学   38篇
废物处理   13篇
环保管理   81篇
综合类   516篇
基础理论   275篇
污染及防治   39篇
评价与监测   14篇
社会与环境   20篇
灾害及防治   57篇
  2024年   10篇
  2023年   30篇
  2022年   26篇
  2021年   33篇
  2020年   34篇
  2019年   25篇
  2018年   18篇
  2017年   21篇
  2016年   26篇
  2015年   34篇
  2014年   82篇
  2013年   54篇
  2012年   57篇
  2011年   50篇
  2010年   46篇
  2009年   39篇
  2008年   48篇
  2007年   47篇
  2006年   33篇
  2005年   20篇
  2004年   16篇
  2003年   31篇
  2002年   30篇
  2001年   30篇
  2000年   31篇
  1999年   15篇
  1998年   22篇
  1997年   22篇
  1996年   20篇
  1995年   20篇
  1994年   13篇
  1993年   21篇
  1992年   13篇
  1991年   17篇
  1990年   11篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1979年   1篇
排序方式: 共有1053条查询结果,搜索用时 15 毫秒
61.
可疑的种子     
英国政府与农业界将要做出一个长期的原则性决定:是否允许转基因作物在英国的商业化种植。生物技术公司把在北美种植了六年的转基因作物描绘得前景无限。而本报告的目的即是要评估该景象的确切性,如果事实并非如此,那么其问题何在。我们实地调查了北美农民种植转基因大豆、玉米和油菜的经历,并综述了一些独立的研究成果。  相似文献   
62.
研究了玉米叶对水溶液中Pb2+的吸附性能,借助正交和单因素试验探讨各因素对吸附率的影响,利用红外光谱研究吸附机理,并采用Langmuir、Freundlich和Temkin模型对吸附数据进行拟合.结果表明:金属初始质量浓度和体系pH值是影响吸附的重要因素;玉米叶吸附铅离子的最佳pH值为5.0,金属质量浓度和吸附剂投加量最佳比值为80 mg/L:0.170 g,在25℃时玉米叶对铅离子的吸附较快,180min后达到吸附平衡;吸附数据更加符合Freundlich和Temkin等温吸附模型,由Langmuir等温吸附模型可知玉米叶最大吸附量为103.266mg/g,吉布斯自由能△Ge为负值,该过程吸热且自发进行.红外光谱分析表明,参与作用的官能团为羟基、羧基、酰胺或脂肪族C-x(x代表Cl、Br、I).  相似文献   
63.
根据1957—2012年全国608个气象站的逐日气象资料,利用Penman-Monteith公式计算作物潜在蒸散量,对全国及水资源一级分区潜在蒸散量时空分布特征、变化趋势进行分析;基于Arc GIS及SPSS软件,采用主成分分析方法,对潜在作物蒸散量的影响因子及其分布特征进行探讨。结果表明:近56 a来,全国年潜在蒸散量在616~2 128 mm之间,河西走廊、南部岭南地区、海南岛以及华南沿海作物潜在蒸散量较大,而在黑龙江一带、四川盆地及西南地区东部,潜在蒸发量较小。各分区年均潜在蒸发量均呈现减少趋势,西北诸河区倾向率最大,为-12.22 mm/10 a;影响潜在蒸散量的因子中,第1主成分为热力学因子,第2主成分为水分因子和辐射因子,第3主成分为地理因子和空气动力学因子,第4主成分为高程因子。  相似文献   
64.
秸秆添加对厨余垃圾堆肥时H_2S和NH_3排放的影响   总被引:1,自引:1,他引:0  
《环境工程》2015,33(1):100-104
厨余垃圾堆肥过程中NH3和H2S的排放不但降低了堆肥的养分含量,而且会引发严重的恶臭。以厨余垃圾为研究对象,以玉米秸秆为膨松剂,设置5%、10%、15%、20%(质量分数)4个添加比例(湿基)的堆肥处理,研究秸秆添加量对厨余垃圾堆肥过程中H2S和NH3排放的影响。结果表明:从温度来看,仅T4处理未达到无害化和腐熟的要求。氧气不足是造成H2S排放的主要原因,4个堆肥处理的H2S主要集中在前2周排放,随着秸秆添加量的增加,H2S的排放量逐渐降低。与T1处理相比,T2、T3、T4的H2S累积排放量分别降低了35.5%、44.7%、64.2%。各处理NH3的排放趋势与H2S类似,高温期为NH3释放的关键时期,NH3累积释放量占总释放量的62.2%~72.2%,与T1处理相比,T2、T3和T4的NH3累积排放量分别降低了36.9%、45.2%、76.3%。由此可见,添加适量的玉米秸秆不但能促进厨余垃圾堆肥的进行,明显降低堆肥过程中H2S和NH3的排放,而且可以实现玉米秸秆的资源化利用。  相似文献   
65.
ENN精粹     
徐芳  夏威 《世界环境》2015,(3):94-95
<正>计算机+基因工程提升作物产量2015年4月10日ENN环境新闻网新闻美国科学家最新研究发现,超级计算机与基因工程可以帮助农作物提高将阳光转化为能量的效率,并有望解决迫在眉睫的粮食短缺问题。研究者认为:光合作用远未达到最大的理论效率。超级计算机的快速发展可以允许科学家对光合作用过程中的每一个阶段进行建模,找到并改进植物生长中的瓶颈问题。不过,论  相似文献   
66.
企业根据酒精废水特点及排放标准的要求,结合厂内场地和现有设施情况,确定采取UASB+水解酸化+接触氧化+化学氧化的组合处理工艺,以保证废水达标排放。  相似文献   
67.
关于玉米发酵酒精废水处理技术综述   总被引:2,自引:0,他引:2  
本文介绍了各种适用于酒精废水的厌氧和好氧生物处理技术,及国内研究或投入运行的各类厌氧+好氧组合工艺,供同类企业废水处理参考。  相似文献   
68.
以作物种植横向专业化和纵向专业化为切入点,运用中国13个粮食主产省份1980—2018年的面板数据,考察了作物种植专业化对农业化肥减量的影响及其作用机制。研究主要发现:(1)基础回归分析表明,作物种植横向专业化和纵向专业化均对化肥施用强度具有显著的削减效应,对化肥的利用效率有显著的增效作用。且作物种植纵向专业化或社会化服务卷入程度加深,能够增强横向专业化对化肥的减量增效作用。(2)影响路径分析表明,作物种植横向专业化通过扩大农地经营规模,进而增强了作物种植纵向专业化对化肥施用强度的削减效应和利用效率的增效作用。但也应警惕,通过扩大农地经营规模以增强作物种植纵向专业化的减量效应可能存在临界水平。此外,当作物种植横向专业化和纵向专业化积极配合时,可能推移临界点的到来。据此,通过发展作物种植横向专业化,鼓励农户通过服务外包卷入农业的纵向专业化分工以及发展农业适度规模经营,进而实现农业领域化肥的减量增效。  相似文献   
69.
为查明老工业城市土壤-作物系统的重金属环境地球化学特征,测试和分析石嘴山市水稻、小麦和玉米籽实及其根系土重金属含量和形态,利用统计学方法、风险评价编码法(RAC)、生物富集系数法(BCF)、土壤和农产品综合质量影响指数法(IICQ)及ArcGIS空间插值法开展土壤-作物系统重金属的迁移累积特征剖析及风险协同评价.结果表明,根系土中重金属ω(As)、ω(Cd)、ω(Cr)、ω(Cu)、ω(Hg)、ω(Ni)、ω(Pb)和ω(Zn)均值分别为12.56、 0.19、 63.48、 23.52、 0.038、 28.86、 21.68和69.47mg·kg-1,与宁夏土壤背景值相比呈一定程度的累积,其中以Cd和Hg累积效应最为显著,但均低于农用地土壤污染风险筛选值;配套作物中上述8种重金属含量均值分别为0.014 9、 0.011 2、 0.075、 6.7、 0.001 5、 0.67、 0.042 7和20.48mg·kg-1,与食品中污染物限量相比,作物中As、 Pb和Cr点位超标率分别为4%、 3%和1%,其余元素均未超标;相比水稻和小麦,...  相似文献   
70.
为定量评估生物炭对主粮作物产量的影响,收集了公开发表的116篇相关文献,共866对数据,采用Meta分析法定量分析了生物炭对我国主粮作物产量的影响及其影响因子,同时构建结构方程模型(SEM)进一步解释了因子间的交互关系.结果表明,与不施用生物炭相比,生物炭施用后可改善主粮田土壤理化性质,提高主粮作物产量,平均增产率为8.77%.其中,当生物炭pH为7~8时,平均增产率最大,可达26.49%;其C/N<60时,平均增产率为13.73%,显著高于C/N≥60的平均增产率.将生物炭施入酸性或中性土壤中,更能发挥其增产效应.当施炭量为10~20 t·hm-2时,小麦和玉米的平均增产率最大;施炭量为15~25 t·hm-2时,水稻平均增产率最大.但是,不同施炭水平的水稻增产率相近,可考虑损失部分产量,适当减施以兼顾经济效益.此外,生物炭增产效应会随施用年限增加而不断减弱,一般3 a后增产不显著.SEM表明生物炭施用量不仅直接影响主粮作物产量,还通过改善土壤肥力间接影响主粮作物产量,而生物炭C/N和pH仅通过改善土壤肥力影响主粮作物产量.因此,今后...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号