首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1603篇
  免费   255篇
  国内免费   914篇
安全科学   121篇
废物处理   111篇
环保管理   144篇
综合类   1644篇
基础理论   170篇
污染及防治   347篇
评价与监测   194篇
社会与环境   8篇
灾害及防治   33篇
  2024年   75篇
  2023年   188篇
  2022年   212篇
  2021年   210篇
  2020年   169篇
  2019年   124篇
  2018年   79篇
  2017年   135篇
  2016年   80篇
  2015年   98篇
  2014年   155篇
  2013年   96篇
  2012年   113篇
  2011年   113篇
  2010年   96篇
  2009年   87篇
  2008年   69篇
  2007年   92篇
  2006年   105篇
  2005年   73篇
  2004年   60篇
  2003年   54篇
  2002年   37篇
  2001年   30篇
  2000年   35篇
  1999年   31篇
  1998年   21篇
  1997年   23篇
  1996年   22篇
  1995年   13篇
  1994年   12篇
  1993年   12篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   15篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有2772条查询结果,搜索用时 0 毫秒
51.
为研究我国中原城市群中心城市郑州市的不同粒径大气颗粒物的组成特征,利用八级撞击式采样器在夏、秋季进行大气颗粒物分级采样,利用离子色谱测定Na~+、Ca~(2+)、NH_4~+、K~+、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)共9种离子的浓度,利用在线离子色谱分析仪监测颗粒物中硝酸盐的实时浓度.结果表明,采样期间郑州市水溶性离子平均浓度为(70. 9±52. 1)μg·m~(-3),其中监测的9种水溶性离子浓度从大到小顺序依次为:NO_3~- SO_4~(2-) NH_4~+ Ca~(2+) Na~+ Cl~- Mg~(2+) K~+ F~-、NO_3~-、SO_4~(2-)和NH_4~+占总水溶性离子的质量分数为79. 9%;无论在秋季或夏季SO_4~(2-)主要集中在≤1. 1μm粒径段上,而NO_3~-主要集中在0. 65~3. 3μm粒径段上. NO_3~-和SO_4~(2-)夏季和秋季均呈双峰分布,主要分布于细粒子中; NH_4~+夏季呈双峰分布,秋季呈单峰分布,表现出季节变化.郑州市夏季臭氧污染严重,O_3与NO_3~-明显地"错峰"现象,表示大气中存在光化学反应;秋季颗粒物污染严重,采样期间[NO_3~-]/[SO_4~(2-)]的比值远大于0. 5,移动源成为颗粒物重要的来源.夏季NOR、SOR峰值在1. 1~2. 1μm粒径段上,秋季两者峰值在0. 65~1. 1μm粒径段上;夏季硫的气-粒转化大于氮的转化,而秋季则相反.  相似文献   
52.
为研究合肥市交通干道大气苯系物污染状况,采用自主研制的差分吸收光谱(DOAS)系统,于2016年3月期间对合肥市交通主干道大气苯系物(苯、甲苯、间二甲苯和邻二甲苯)以及常规污染物NO_2、SO_2等进行了连续观测.观测结果显示,观测期间苯、甲苯、间二甲苯和邻二甲苯的平均浓度分别为:21.7、63.6、33.9和98.7μg·m~(-3).与国内外其它城市比较显示,合肥市交通干道大气苯和甲苯的污染处于中等水平,二甲苯的污染较为严重.结合观测期的间风速风向、T/B特征比值以及与CO等污染物的相关性,对上述苯系物来源进行了分析,结果显示观测期间T/B值为0.8~4.5,苯、甲苯与CO的相关性系数R分别为0.55和0.34.表明机动车尾气排放是观测区域苯和甲苯的主要排放源之一,同时也受到周边工业园区排放的影响,二甲苯的主要排放源为观测地点北偏东方向的涂料行业工业园区.苯和甲苯的夜间高浓度峰值分析结果表明,夜间的高浓度苯和甲苯可能主要来源于观测地点周边工业园区的排放.观测区域苯系物的臭氧生成潜势(OFP)表现为邻二甲苯间二甲苯甲苯苯,其中二甲苯的OFP占总OFP的85%,表明周边工业园区的排放对该地区臭氧生成的贡献较大.  相似文献   
53.
成渝城市群臭氧污染特征及影响因素分析   总被引:14,自引:0,他引:14  
为研究成渝城市群O_3污染特征及其影响因素,对成渝城市群15个城市2015—2016年国控环境监测站点和国家气象台站数据进行了研究.结果表明,研究区域15个城市均存在不同程度的O_3超标现象.2015—2016年成渝城市群O_3污染形势愈发严峻,春末及夏季污染最为严重,且在7月达到O_3浓度峰值(118μg·m~(-3)),O_3污染空间分布呈片状,以资阳为中心的遂宁、眉山、成都等城市为O_3污染较为严重的区域.颗粒物、NO_2及CO均与O_3有显著相关性,其中,颗粒物与O_3浓度在冬季呈负相关,在夏季则表现为正相关.太阳辐射、气温、相对湿度及流场均是影响O_3浓度的重要因子,强辐射、高温及低湿易形成较高浓度的O_3,相对湿度对O_3浓度的影响呈先升后降的关系.  相似文献   
54.
基于2000~2015年香港地区的臭氧监测数据和气象数据,分析了香港的臭氧污染特征及气象因素对臭氧污染的影响.结果表明:(1)香港地区臭氧浓度呈现明显的季节变化特征,其中秋季春季冬季夏季,臭氧超标日集中在夏季和秋季,超标日发生在冬季和春季的情形极少.(2)2000~2015年香港臭氧日最大8h平均浓度(MDA8)年均浓度呈增长趋势,平均增长速率为0.77μg·(m3·a)-1,臭氧MDA8第90百分位数浓度同样呈增长趋势,增长速率为1.49μg·(m3·a)-1.(3)较高的气温是香港地区臭氧污染发生的必要条件,气温越高越容易导致更高浓度的臭氧污染.(4)绝大多数情况下,臭氧浓度与相对湿度间呈负相关关系,相对湿度越高,香港地区的臭氧MDA8平均浓度及第90百分位数浓度均会降低.(5)当香港发生臭氧污染时,盛行风往往从偏北风或偏东风转为偏西风.随着风速的增大,臭氧平均浓度变化不大,但是臭氧第90百分位数浓度会明显降低.(6)降水和云量是影响臭氧浓度的重要因素,连续多日的无雨或少雨天气是臭氧污染事件发生的必要条件,而随着云量的增加,臭氧平均浓度和第90百分位数浓度会持续降低.(7)在太阳总辐射量≤20 MJ·m-2或日照时长≤10 h的情况下,臭氧浓度与太阳辐射及日照时长呈正相关关系.然而,在太阳辐射强烈的情况下(太阳总辐射量 20 MJ·m-2或日照时长 10 h),随着太阳辐射增强或日照时长的增加地面臭氧浓度反而降低,这是因为太阳辐射强烈的情况常出现在雨后天晴的背景下,并盛行来自海洋的偏南风,使得臭氧污染不易形成.(8)香港臭氧超标日的出现往往伴随着一系列气象条件的共同改变,包括晴天少雨、辐射增强、边界层高度增加、相对湿度降低、风速变小以及气温升高等气象特征,污染结束则伴随着相反的气象变化.  相似文献   
55.
基于兰州市大气VOCs排放清单,选取石化厂、乙烯厂、涂料厂3个典型企业采集VOCs样品,分析其无组织排放特征,并采用MIR(最大增量反应活性)法和LOH(·OH反应速率)法综合评价其化学反应活性,识别各企业的VOCs活性优势物种,同时探究不同企业特征VOCs比值.结果表明:不同排放源φ(VOCs)差异较大,范围为20.8×10-9~6 520.3×10-9.从VOCs物种构成上来看,涂料厂芳香烃占比最高,而石化厂、乙烯厂均以烷烃物种最为丰富,石化厂不同工艺VOCs物种构成略有差异.从活性上看,涂料厂VOCs活性最高,其LOH和OFP(臭氧生成潜势)分别为2 676.9 s-1和72 519.0×10-9,约为其他行业的18~1 000倍,间/对-二甲苯、乙苯、邻二甲苯等物种活性较大;其次为石化厂,其LOH和OFP分别为273.2 s-1和4 039.1×10-9,正戊烷、异戊烷、乙烯、丙烯等物种活性贡献率高,其中柴油工艺对石化厂VOCs活性贡献率最大;乙烯厂的OFP最低,其LOH和OFP分别为4.6 s-1和69.7×10-9,其VOCs活性主要来自乙烯、丙烯、正丁烯等烯烃物种.各工业源BTEX(苯、甲苯、乙苯及3种二甲苯异构体的合称)分布具有一定的差异,对于指示不同VOCs来源有一定的参考价值,但不同源比值的重叠性也表明并非全部VOCs来源可以通过特征物种比值来区分.研究显示,控制工业源特别是涂料与石化工业VOCs的排放有助于控制兰州市O3的生成.   相似文献   
56.
应用隧道测试方法在天津市五经路隧道于工作日和非工作日对机动车挥发性有机物(VOCs)污染特征及排放因子(EFs)进行研究,采用3.2 L真空采样罐采集隧道内气体样品,应用气相色谱-质谱联用仪(GC-MS)对罐内VOCs组分进行分析,得到99种组分的定量结果.对VOCs浓度水平与变化特征、EFs进行了分析,计算隧道内VOCs的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),并与已发表的研究数据进行了对比.结果表明,隧道入口VOCs平均浓度为(190.85±51.15)μg·m~(-3),中点平均浓度为(257.44±62.02)μg·m~(-3).隧道总排放因子为(45.12±10.97) mg·(km·辆)-1,烷烃、烯烃、炔烃、芳香烃、卤代烃和含氧VOCs(OVOCs)的EFs分别为(22.79±7.15)、(5.04±1.20)、(0.78±0.34)、(9.86±2.81)、(0.26±0.17)和(6.25±2.27) mg·(km·辆)-1,与2009年测试结果相比下降明显.其中,异戊烷、甲苯、乙烯、甲基叔丁基醚(MTBE)和乙烷是机动车排放VOCs中排放因子较高的组分;甲基叔丁基醚/苯(MTBE/B)、甲基叔丁基醚/甲苯(MTBE/T)比值分别为1.07和0.77,说明蒸发排放对机动车排放VOCs的贡献不可忽视.隧道内VOCs的OFPs和SOAFPs分别为(145.50±37.85) mg·(km·辆)-1和(43.87±12.75) mg·(km·辆)-1,较2009年天津测试结果分别降低94.23%和90.88%,OFPs和SOAFPs的锐减与排放标准加严和油品升级密切相关.  相似文献   
57.
构建了铁碳-O_3/H_2O_2体系降解矿化垃圾床渗滤液尾水中有机物,并考察了体系O_3、铁碳及H_2O_2投加量、初始pH值和反应时间对铁碳-O_3/H_2O_2体系处理渗滤液尾水的影响.结果表明,在铁碳投加量为3 g·L~(-1),O_3投加量为9.798 mg·min~(-1),H_2O_2投加量为2 mL·L~(-1),初始pH值为3的条件下,反应10 min后,渗滤液尾水的COD和UV_(245)分别从711.96 mg·L~(-1)、0.19下降至295.04 mg·L~(-1)、0.10.类比实验结果表明,铁碳-O_3/H_2O_2体系对渗滤液尾水有机物具有较高的去除率,且可生化性得到提高(BOD/COD从0.04增加至0.40).紫外-可见和三维荧光光谱显示,废水中难降解有机物转化为小分子有机化合物且腐殖质的分子缩合度降低.最后,采用SEM-EDS、XRD和XPS技术对铁碳-O_3/H_2O_2体系的反应机理进行了解析,发现铁碳-O_3/H_2O_2反应的机理为铁碳微电解反应、铁氧化物-H_2O_2非均相芬顿反应、O_3/H_2O_2、铁碳-O_3非均相的高级氧化作用和铁基胶体对有机物的吸附沉淀作用.研究表明,铁碳-O_3/H_2O_2体系是一种能够有效去除矿化垃圾床渗滤液尾水中难降解有机物的方法.  相似文献   
58.
伴随着经济发展和城镇化进程的加速,很多城市的臭氧浓度存在超标问题.本文选取2014—2017年哈尔滨城区污染数据及气象要素数据,对哈尔滨近地面层O_3时空分布特征及其与气象要素的关系进行了分析,结果表明:哈尔滨O_3日内单峰分布,最高值出现在下午14:00,最低值在清晨7:00.空间分布东南部最高,其次是南部,城中区较低.日间周末的近地面O_3浓度较高,而夜间工作日的O_3浓度较高.哈尔滨O_3浓度与平均气温正相关,与相对湿度负相关,与低于37 W·m~(-2)的紫外辐射正相关.  相似文献   
59.
陈璐  刘海龙  吉力  李焕峰 《环境科学学报》2018,38(12):4680-4688
研究了低温条件下单独臭氧及MgO催化臭氧化降解水中氨氮的效率和特征,并对其反应机制分别进行了探讨.结果表明,pH是影响臭氧和催化臭氧化除氨的重要因素,不仅影响溶液中NH_3与NH~+_4的比例和臭氧氧化氨氮的速率,还影响氧化产物种类,从而影响脱氮效果.10℃时,单独臭氧对水中氨氮的氧化降解效率随pH的升高而增大,pH≤9时整体降解效率不高,pH=9时仅为16.39%,而pH=10时达到41.77%.臭氧和·OH共同参与降解氨氮的过程.单独臭氧氧化氨氮生成氮气的选择性具有pH依赖性,并与Cl~-密切相关.pH低(≤9)时,氨氮多以NH~+_4形态存在,O_3与Cl~-反应生成ClO~-_x(x=1、3),再氧化NH~+_4,从而生成气态产物N_2或N_2O.MgO在低温条件下具有很强的催化臭氧化降解氨氮的能力且温度升高有利于反应的进行,0、10、20℃时,MgO催化臭氧化氨氮的效率分别为77.53%、80.17%、91.26%.此过程中,·OH参与反应的程度低,一部分氨氮降解依靠ClO~-_x氧化NH~+_4,而氨氮降解的主要途径为O_3对NH_3的直接氧化.  相似文献   
60.
利用臭氧观测仪(OMI)卫星遥感反演的大气边界层(PBL)SO2柱含量(PBL SO2)数据分析了自2005年以来中国PBL SO2柱含量数据的空间分布特征、变化趋势及其影响的原因.从长时间尺度上,PBL SO2柱含量呈现明显的下降趋势.2005年中国区域年平均PBL SO2柱含量为0.317DU,2016年为0.276DU,减少了0.041DU,大约为13.2%.SO2柱含量呈现明显的周期变化特征.冬季浓度较高,夏季较低,最小值和最大值分别出现在7和12月,分别为0.246和0.404DU.小波分析显示SO2的变化在10个月的尺度水平上存在明显的主振荡周期,在40个月的尺度水平上存在明显的次周期变化.中国区域SO2污染严重的高值区主要出现在京津冀鲁环渤海地区、关中平原(山西省和陕西省)、河南省大部分地区、四川盆地、长江三角洲地区和珠江三角洲.最大的SO2柱含量值可达1.1DU以上.京津冀鲁环渤海地区的高值区已经延伸到长江三角洲地区,有向南延伸和珠江三角洲连在一起的趋势.由于地形和天气特征的影响,四川盆地地区SO2出现次高值区.在青藏高原和西北地区,SO2浓度较低,呈现背景值特征,多年平均的SO2约在0.05DU的水平.中国区域SO2变化趋势在空间分布上存在明显的区域差异,变化的范围在-0.70~0.15DU之间.SO2出现逐渐减少的地区主要是在高值区,如京津冀鲁环勃海地区、关中平原、四川盆地,长江中下游和珠江三角洲.减幅最大的是四川盆地和珠江三角洲,大约减少了61%.四川盆地2005~2016年约减少了0.55DU;珠江三角洲约减少了0.45DU.出现增长的地区主要是西部和北部地区,以及东南沿海除珠三角外的大部分区域,最大增长大约为0.15DU.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号