首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   86篇
  国内免费   216篇
安全科学   84篇
废物处理   35篇
环保管理   29篇
综合类   411篇
基础理论   55篇
污染及防治   98篇
评价与监测   6篇
社会与环境   11篇
灾害及防治   8篇
  2024年   24篇
  2023年   68篇
  2022年   89篇
  2021年   95篇
  2020年   51篇
  2019年   61篇
  2018年   39篇
  2017年   20篇
  2016年   29篇
  2015年   20篇
  2014年   43篇
  2013年   23篇
  2012年   25篇
  2011年   12篇
  2010年   18篇
  2009年   8篇
  2008年   17篇
  2007年   18篇
  2006年   18篇
  2005年   11篇
  2004年   5篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
641.
水库大坝建设会对鱼类洄游造成阻隔影响,为减少大坝阻隔对鱼类遗传交流的影响,大坝应建设过鱼设施。福建省泉州白濑水利枢纽工程采用升鱼机过鱼设施,而进鱼口位置选择是影响过鱼设施设计成败的关键因素。根据白濑水利枢纽布置特点,从坝下流场、工程条件、过鱼效果等方面进行进鱼口位置比选研究,为类似水库工程过鱼设施进鱼口位置选择提供参考和借鉴。  相似文献   
642.
四溴双酚A(TBBP-A)生产废水含有多种难降解有机物及大量盐类,是极难处理的化工废水。采用外加直流电压活化过硫酸钠的方法预处理TBBP-A生产废水,以总有机碳(TOC)降解率为指标考察有机物的降解情况。结果表明,酸性条件有利于电活化过硫酸钠降解TBBP-A生产废水,pH=2时过硫酸钠浓度对TOC降解情况影响不大,中性或碱性环境下,过硫酸钠浓度是TOC降解率的主要影响因素。适当提升外加电压有利于促进TBBP-A生产废水中TOC的降解,处理时间宜控制在1.0h以内,电极介质对于TOC降解的影响总体不大。当外加电压为3.0V,过硫酸钠质量分数为2%~5%,pH=2,反应时间为1.0h左右时,TOC降解率可以达到40%以上,可见电活化过硫酸钠技术可以作为预处理TBBP-A生产废水的有效手段。  相似文献   
643.
韩仪  黄明杰  周涛  吴晓晖 《环境化学》2020,39(3):735-744
本文以苯酚为降解对象,系统性研究了氧化铜(CuO)活化过二硫酸盐(PDS)与过一硫酸盐(PMS)降解苯酚的界面反应机理.结果表明,CuO可高效活化PDS和PMS降解苯酚,电子顺磁共振(EPR)结果表明CuO/PDS体系中的活性物种有SO_4~(·-)、·OH和O_2~(·-),而CuO/PMS体系中主要存在O_~(·-)和~1O_2,猝灭实验结果表明CuO/PMS体系中O_2~(·-)起到了关键作用. CuO/PDS和CuO/PMS体系均可选择性降解具有给电子官能团的有机物.在CuO/PDS体系中,主要活化机理为富电子有机物通过取代表面羟基吸附于CuO表面,与CuO发生电子传递产生苯氧自由基,进一步可活化PDS和O_2产生SO_4~(·-)、·OH、O_2~(·-)等活性物种实现对有机物的降解.而在CuO/PMS体系中,PMS通过取代CuO表面羟基产生亚稳态中间体,与PMS及O_2~(·-)反应生成~1O_2实现对苯酚的降解,虽然体系中也存在与CuO/PDS体系中类似的苯氧自由基活化过程,但其对有机物降解的贡献较小.  相似文献   
644.
亚铁活化过硫酸盐降解水中双氯芬酸钠   总被引:1,自引:0,他引:1  
研究了Fe~(2+)活化过硫酸盐(PS)对水中双氯芬酸钠(DCF)的降解,调查了pH、Fe~(2+)用量、PS用量、Cl~-、常见过渡金属离子以及常见还原剂对Fe~(2+)/PS降解DCF的影响.结果表明:DCF在pH 2.0—9.0范围内均有一定的去除效果,且pH 3.0时效果最佳;Fe~(2+)与S_2O_8~(2-)的最佳投加摩尔比为1∶1,过量的Fe~(2+)可消耗部分硫酸根自由基从而抑制DCF降解;Cl~-对DCF的降解具有一定的促进作用,且Cl~-浓度越大,促进作用越大;Ce~(3+)和Co~(2+)对DCF的降解几乎没有影响,而Cu~(2+)和Mn~(2+)具有一定的促进作用;抗坏血酸和硫代硫酸钠具有双重作用,在低浓度时对DCF的降解具有促进作用,高浓度时呈现抑制作用,而盐酸羟胺和亚硫酸氢钠在研究的浓度范围内均呈现促进作用.  相似文献   
645.
为提高过硫酸盐氧化剂在土壤中的传输效率,对以电渗流为主导因素的电动输运特性进行研究。通过土壤箱体的实验和数值模拟,研究电势梯度、土壤间隙水盐浓度和温度、过硫酸钠投放电极和浓度、pH对电渗流速和电渗系数影响,并分析过硫酸盐电动输运特性。结果表明,过硫酸盐在阳极投放与在两极投放时电动输运效果较好;提高投放的过硫酸盐浓度可以同比例提高相同时刻土壤中的过硫酸根浓度,但不改变电动输运所需的时间;提高电势梯度可以等比例提高电渗流速,但不能提高电渗系数;提高盐浓度可使电渗流速和电渗系数以相同比例提高;土壤升温至60℃和在2~12区间内的pH改变对电渗流速和电渗系数的提高比例为14.5%和4.8%;当盐浓度低于0.1 mol·L-1时,在1、2 V·cm-1的电势梯度下,土壤的最大温升分别为8℃、40℃。因此,在过硫酸盐的电动输运过程中,建议采用1V·cm-1电势梯度以降低过硫酸盐的活化速率。本研究结果可为电动输运过硫酸盐的传输方案提供参考。  相似文献   
646.
含高浓度污染物和色度实际含糖废水的高效处理一直是水处理领域的难点。针对单一絮凝沉淀和过硫酸钠氧化体系的技术局限性,首次构建了絮凝耦合过硫酸钠氧化体系,同步实现了对废水中COD和色度的高效去除,并深入探究了污染物的转化机理。结果表明:在最佳实验条件下,絮凝耦合过硫酸钠氧化体系对实际含糖废水中COD的去除率高达95.74%,色度去除率高达96%。紫外全波长扫描和GC-MS分析结果表明,絮凝沉淀过程优先去除不含发光基团的大分子聚合物、长链烷烃等有机污染物,含发光基团的大分子有机污染物部分被去除;在后续过硫酸钠氧化过程中,实际废水中含发光基团的大分子有机污染物几乎被彻底去除,小分子有机污染物得到高效去除。本研究可为复杂的实际含糖废水的达标排放提供参考。  相似文献   
647.
研究了武汉市繁华市中心典型过富营养湖泊沉积物—间隙水体系磷形态的相关性。对沉积物—间隙水中磷形态的连续提取分析发现,自然粒度下,沉积物中有机质含量与沉积物中有机/细菌聚合磷存在很好的线性相关性,说明沉积物中有机质是有机/细菌聚合磷的源;沉积物中总磷决定间隙水中总溶解性磷和溶解性磷酸盐的含量,并且总磷与间隙水中总溶解性磷和溶解性磷酸盐存在很好的相关性;沉积物中Fe P和Al P分别与间隙水中的Eh和溶解性磷酸盐存在相关性,说明Eh的大小严重影响Fe P和Al P的含量,但是Fe P和Al P含量之和又主导着间隙水中溶解性磷酸盐的含量。对典型市内过富营养湖泊的沉积物-间隙水体系中形态磷的相关性研究,旨在为控制这种典型过富营养湖泊沉积物中磷向水体释放提供理论参考。  相似文献   
648.
以辽河石化公司浓缩污泥为研究对象,考察了含油污泥添加煤作为助滤剂的压榨处理工艺的技术可行性和经济合理性。通过测试分析,油泥原样含水率为97.1%,油质量浓度3 516.3 mg/L,固含量2.5%,pH值为7.2。考察了工艺条件对油泥压榨效果的影响。实验表明,煤粒度范围0.25~0.42 mm、过滤压力0.4 MPa、煤添加量32 g/L、空气吹脱时间10 min为最佳工艺条件。在最佳工艺条件下对油泥压榨处理工艺进行分析,发现C对油的截留率可达96.2%,滤液经沉降后可以达到返回污水处理系统的要求;滤饼含水率降至48.2%,热值可达12 958.2 kJ/kg(自然干化24 h后为14 613.7 kJ/kg),可用于锅炉燃烧,达到回收利用油泥中可燃物质的目的。对油泥压榨工艺进行经济效益分析,在中试条件下,每处理1 t油泥约有2.1元的收益。  相似文献   
649.
马祥琴 《安全》2010,31(5):38-38
电动机运行时,轴承外圈允许温度不应超过95℃,如果超过这个值就是电动机轴承温度过高,也称电动机轴承发热。轴承发热是电动机最常见的故障之一。轻则使润滑脂稀释漏出,重则将轴承损坏,给用户造成经济损失。今就轴承发热的原因及处理方法简单介绍如下。  相似文献   
650.
采用乙二胺四乙酸(EDTA)强化纳米零价铁(nZVI)活化过硫酸钠(PS)降解地下水中1,2-二氯乙烷(1,2-DCA).通过分析1,2-DCA比降解率(Sq)、矿化度、1,2-DCA降解动力学及游离Fe2+和 Fe3+质量浓度变化规律,阐明了 EDTA强化效果及作用机制;考察了 EDTA投加量、pH、阴阳离子对EDT...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号