首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1655篇
  免费   134篇
  国内免费   430篇
安全科学   151篇
废物处理   77篇
环保管理   112篇
综合类   1313篇
基础理论   234篇
污染及防治   120篇
评价与监测   186篇
社会与环境   19篇
灾害及防治   7篇
  2024年   8篇
  2023年   25篇
  2022年   53篇
  2021年   60篇
  2020年   48篇
  2019年   79篇
  2018年   51篇
  2017年   61篇
  2016年   84篇
  2015年   104篇
  2014年   176篇
  2013年   115篇
  2012年   107篇
  2011年   99篇
  2010年   102篇
  2009年   89篇
  2008年   84篇
  2007年   88篇
  2006年   71篇
  2005年   80篇
  2004年   72篇
  2003年   54篇
  2002年   41篇
  2001年   50篇
  2000年   37篇
  1999年   38篇
  1998年   43篇
  1997年   43篇
  1996年   49篇
  1995年   37篇
  1994年   34篇
  1993年   31篇
  1992年   24篇
  1991年   24篇
  1990年   21篇
  1989年   31篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
排序方式: 共有2219条查询结果,搜索用时 453 毫秒
741.
肖秀芝 《安全》2004,25(5):33-34
防毒面具是有毒作业常用的个体呼吸防护设备,它所使用的化学滤毒盒,能将吸入空气中的有害气体或蒸气滤除,或将其浓度降低,保持使用者的身体健康.根据我国的标准,通常将滤毒盒分为防有机气体、防氨气、防汞蒸气和防酸性气体(如氯气、氯化氢和二氧化硫等).  相似文献   
742.
典型岩溶区不同土地利用方式下雨季、旱季岩溶作用研究   总被引:1,自引:0,他引:1  
2006年4月-2007年4月,通过野外溶蚀标准试片法,测试得出重庆金佛山岩溶区山腰碧潭泉和山顶水房泉两泉域5种典型土地利用方式下的6个测试点雨季和旱季溶蚀量.测试结果表明:雨季溶蚀量明显高于旱季,位于生态保护良好的山顶原始生态区测试点溶蚀率高于保护区、非保护区交界地带且受人类活动影响较大的山腰测试点;同一时段内不同土地利用方式下的测试点溶蚀速率也存在较大差异;6个测试点的年均溶蚀量由大到小依次为:水房泉竹林地>水房泉林地>水房泉草地>碧潭泉林地>碧潭泉灌草丛>碧潭泉耕地.从测试点的土壤基本理化性质分析得出,在研究区域内局地气候(降雨量、温度)影响的基础上,除了土壤CO_2浓度,土壤有机质也是控制两泉域岩溶速率的主要因素之一.  相似文献   
743.
浮世绘     
《现代职业安全》2014,(11):54-55
正~~  相似文献   
744.
本文采用四丙基硼化钠对环境水中的甲基汞和乙基汞进行衍生化,吹扫捕集-气相色谱质谱联用法分析水中的甲基汞和乙基汞.与传统的巯基棉富集方法相比,大大减少了前处理时间和步骤,并且避免使用甲苯萃取而产生的有机污染问题.该方法在10—200 ng·L-1的浓度范围内相关系数R在0.9995以上,方法回收率和重复性较好,甲基汞和乙基汞的检出限(S/N=3)分别达0.69 ng·L-1和1.96 ng·L-1.  相似文献   
745.
西藏土壤汞的分布特征及污染评价   总被引:1,自引:0,他引:1  
为了解西藏地区土壤汞的污染水平与现状,采集西藏四区-市(拉萨、林芝、那曲、阿里、日喀则)耕地、冲积土、草地、荒地4 种类型的土壤,其中表层土壤54 个,剖面样品18 个.利用直接加热-金管富集-原子吸收法对土壤中汞含量进行分析,结果表明,西藏地区土壤中汞含量平均含量为0.026 mg·kg^-1,低于我国土壤中汞的背景值,与先前西藏土壤中汞的含量相近.部分样品中汞的含量较高,其中最大值为0.563 mg·kg^-1,可能与人为源点状污染有关.西藏土壤汞的分布具有显著的地势分布特征,土壤中汞含量从东南到西北逐渐降低.这与西藏的地势条件和人为活动有关.由于土壤中有机质与人为影响的差异,不同类型土壤中耕地土壤汞含量最高(0.051 mg·kg^-1),冲积土最低(0.015 mg·kg^-1),偏远地区荒地汞含量最稳定.西藏东南和西北地区土壤汞的垂直分布特征有明显的差异,西北低汞含量地区垂直分布特征主要表现为表层〉中层〉底层,而东南地区分布规律并不明显,人为翻动频繁和较复杂汞来源与迁移是造成都东南部耕地土壤和河滩土汞含量垂直分布的主要原因.以西藏土壤背景含量水平为单因子污染评价标准,结果显示西藏27.4%的土壤处于中度或重度污染,31.5%处于无污染状态,人为活动对西藏地区土壤中汞含量的升高有较大的贡献.  相似文献   
746.
系统采集典型汞污染地区(铅锌冶炼、金矿冶炼和燃煤电厂)食物样品(大米、蔬菜和鱼肉) 409个,测定其总汞含量以评估当地居民食物摄入汞暴露的健康风险。结果显示:铅锌冶炼地区大米总汞含量的几何均值为5.99μg·kg~(-1)(3.02~30.7μg·kg~(-1)),仅有1个样品总汞含量超过我国大米汞限量标准(20μg·kg~(-1)),蔬菜和鱼肉总汞含量分别为0.646~5.44μg·kg~(-1)和1.80~26.4μg·kg~(-1),均未超过我国食品汞限量标准;金矿冶炼地区大米总汞含量的几何均值为4.46μg·kg~(-1)(3.13~8.67μg·kg~(-1)),蔬菜和鱼肉总汞含量分别为0.760~7.83μg·kg~(-1)和1.59~21.9μg·kg~(-1),所有食物均未超过我国食品汞限量标准;燃煤电厂地区大米总汞含量的几何均值为3.63μg·kg~(-1)(1.05~11.4μg·kg~(-1)),蔬菜和鱼肉总汞含量分别为1.12~3.78μg·kg~(-1)和2.24~12.3μg·kg~(-1),所有食物均未超过我国食品汞限量标准。铅锌冶炼、金矿冶炼和燃煤电厂3个地区居民通过食用食物(大米、鱼肉和蔬菜途径)总汞摄入量的均值分别为0.068、0.038和0.031μg·d~(-1)·kg~(-1),均未超出联合国粮农组织和世界卫生组织食品添加剂联合专家委员会(JECFA)推荐的人体安全总汞摄入量0.71μg·d~(-1)·kg~(-1);表明3个研究地区居民汞暴露的风险较低。大米汞摄入量占3个地区居民食物总汞摄入量的比例分别为77.2%、70.8%和71.4%,食用大米是当地居民汞暴露的主要途径。  相似文献   
747.
748.
针对通过热解直接获得的生物焦汞吸附效率较低的问题,将常规化学沉淀法、溶胶凝胶法、多元金属多层负载与生物质热解制焦过程进行整合,在选择特定组分进行结构设计的基础上,获得了经济高效的掺杂多元金属铁基改性生物焦烟气脱汞剂,为最终实现"以废脱毒"提供关键参数与理论依据.在获得改性生物焦Hg0脱除特性的基础上,针对生物质基础特性,利用多种表征分析手段研究改性样品的微观特性,建立了改性生物焦理化性质与脱汞性能之间的构效关系.研究发现:相比未改性生物焦,以生物焦为载体的铁基复合吸附剂的脱汞性能显著提升,其中掺杂双金属改性样品汞脱除性能的提升程度整体优于掺杂单金属的改性样品;改性生物质的热解过程变得更加剧烈和充分;改性导致生物焦的晶体结构向无序方向演变,所对应的芳香结构单元排列有序度和石墨化程度减弱;所负载或掺杂的多元金属对生物焦物理吸附性能的提升主要体现在对孔隙结构参数的改善方面,同时多元金属的掺杂还可以增强─COOH和C=O官能团对电子的迁移作用,进而提升生物焦对有机汞Hg-OM的结合能力;不同负载金属自身之间在汞脱除过程中可以起到协同促进的作用,进而大幅提高改性生物焦的脱汞性能.  相似文献   
749.
我国污染场地数量众多,对当地环境和健康安全造成了巨大威胁,亟待开展治理修复,同时也需要关注修复过程的绿色可持续性.本文基于绿色可持续修复(GSR)的理念,提出了健康风险评价(HRA)和生命周期评价(LCA)耦合的评估框架,用于计算结合健康风险和修复二次环境影响的净环境效益(NEB),并以中国西南地区某多环芳烃和汞污染的工业场地为例,在现行的修复目标制定框架内,对不同修复目标下的NEB进行了评估.结果表明,在不同权衡选择下,案例最佳的修复目标带来的NEB是直接选择筛选值目标的1.6~15倍,单位经济投入带来的NEB是直接选择筛选值的3~7倍.决策者可应用提出的综合评估框架,平衡当地环境质量改善和修复过程的二次影响,以提高场地修复工程的环境经济可持续性.  相似文献   
750.
太湖不同营养水平湖区汞的形态和分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究富营养化对太湖汞形态分布特征的影响,于2011年水华暴发期,在太湖不同营养水平湖区(竺山湾、贡湖湾及南太湖)采集水样,测定了水体中THg(总汞)、DHg(溶解态总汞)、RHg(活性汞)、TMeHg(总甲基汞)、DMeHg(溶解态甲基汞)的质量浓度及其分布特征. 结果表明,太湖不同营养水平湖区水体中ρ(THg)和ρ(DHg)无显著差异,ρ(THg)为4.67~12.15 ng/L,ρ(DHg)为2.27~10.36 ng/L. 太湖水体中ρ(RHg)平均值为0.79 ng/L,藻类的生长对水体中ρ(RHg)的分布有显著影响,水体营养水平越高,ρ(RHg)越低. 水体中ρ(TMeHg)和ρ(DMeHg)分别为0.10~0.27和0.09~0.23 ng/L,藻类的吸附及水体中较高的Eh(氧化还原电位)和pH抑制了汞的甲基化,但在富营养化较严重的竺山湾,受藻类生长及水华的影响,水体中ρ(TMeHg)(0.22 ng/L)仍相对较高.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号