首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   82篇
  国内免费   250篇
安全科学   223篇
废物处理   20篇
环保管理   115篇
综合类   873篇
基础理论   227篇
污染及防治   67篇
评价与监测   73篇
社会与环境   14篇
灾害及防治   16篇
  2024年   6篇
  2023年   25篇
  2022年   31篇
  2021年   51篇
  2020年   33篇
  2019年   44篇
  2018年   27篇
  2017年   49篇
  2016年   52篇
  2015年   81篇
  2014年   118篇
  2013年   69篇
  2012年   84篇
  2011年   86篇
  2010年   63篇
  2009年   80篇
  2008年   101篇
  2007年   92篇
  2006年   71篇
  2005年   60篇
  2004年   41篇
  2003年   36篇
  2002年   32篇
  2001年   35篇
  2000年   26篇
  1999年   28篇
  1998年   17篇
  1997年   22篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   19篇
  1992年   21篇
  1991年   30篇
  1990年   21篇
  1989年   9篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1628条查询结果,搜索用时 406 毫秒
401.
微波消解、ICP-AES法快速测定水底底泥中的微量元素   总被引:1,自引:0,他引:1  
采用微波消解样品,电感耦合等离子体发射光谱法(ICP-AES),在射频功率:1.1KW,等离子气流量:15.0L/min,辅助气流量:1.50L/min,雾化气流量:0.5 L/min,蠕动泵转速20r./min下,快速测定底泥中微量元素Cu、Pb、Zn、Cr、Cd、Ni、Mn含量的方法,方法快速简便、准确度高、精密度好,可用于各类底泥中微量元素的测定.  相似文献   
402.
快速实现原位取样是准确测定煤层瓦斯含量的基础,为研究不同取样方式对瓦斯含量测定的影响,以淮南潘二煤矿11223工作面为例,对比深孔定点取样与孔口接粉取样方式下取样效果,并对采取的煤样利用直接法进行瓦斯含量测定对比分析。结果表明:深孔定点取样装置满足现场取样要求,且采用深孔定点方式取样可提高瓦斯含量测定准确性。  相似文献   
403.
煤层瓦斯含量是煤与瓦斯突出矿井区域措施效果检验的重要参数之一,目前我国测定煤层瓦斯含量的周期较长、测定步骤复杂,基于煤的瓦斯解吸扩散数学物理模型得到瓦斯含量快速测定模型并将模型内置于CWY50煤中瓦斯含量测定仪中。研究表明,煤层瓦斯含量与瓦斯解吸动力学特征参数有较好的线性相关关系,采用瓦斯含量直接测定与快速测定相结合的方法确定出线性回归系数,并在贵州大湾煤矿X11101工作面进行应用。实践表明:与DGC型井下直接测定结果相比,煤层瓦斯含量快速测定仪最大误差为5.84%,能够满足高瓦斯突出煤层瓦斯含量测定需求。  相似文献   
404.
选择中国南方某铀尾矿库周边2条背景剖面(B1、B2)和3条潜在污染剖面土壤剖面(S1、S2、S3),通过比较各剖面中重金属元素分布,讨论铀尾矿库土壤中外源重金属元素的污染特征、迁移行为.研究表明:(1)相较于背景剖面,邻近铀尾矿库周缘土壤主、微量组分呈显著外源输入特征.(2)应用主成分法分析铀尾矿库周缘土壤外源重金属元素来源,发现尾矿库是该地区土壤重金属污染的直接来源,并向周缘土壤输送As、Pb、Sb、Cd、U等重金属污染元素.(3)分析铀尾矿库周缘土壤中尾矿库源重金属元素(As、Pb、Sb、Cd、U)同主、微量组分与理化参数的关系,发现潜在污染土壤中各金属元素与LOI(烧失量)、K、P呈较密切相关,与Na、Ca、Mn、pH、Fe存在次等相关性;由重金属淋溶迁移程度可知,重金属在潜在污染剖面(S1、S2)呈显著富集特征;各重金属横向迁出特征表明,其迁移至铀尾矿库周缘土壤具有不同的迁移方式.(4)铀尾矿库周缘近源土壤(距尾矿库30m左右)As、Pb、Sb、Cd、U呈显著污染,含量远大于国家农用地土壤环境质量评价标准和所在省份土壤元素背景值,应对该尾矿库潜在风险进行及时管控.  相似文献   
405.
该研究选择中国北方某轻稀土尾矿库围墙外100 m范围内土壤和植物中铀、钍核素的含量为研究对象,采用野外采样、电感耦合等离子体质谱仪分析、单因子污染指数、富集系数、转运系数、根滞留系数等方法,分析计算该区域5种优势植物(紫花苜蓿Medicago sativa、盐地碱蓬Suaeda salsa、芦苇Phragmites communis、大籽蒿Artemisia sieversiana、波斯菊Cosmos bipinnata)并筛选铀、钍核素的富集植物。结果表明:优势植物铀核素的富集系数为0.01~0.03,转运系数为0.07~0.22,根滞留系数为0.78~0.93。优势植物钍核素的富集系数为0.01~0.08,转运系数为0.03~0.33,根滞留系数为0.67~0.97。该区域5种优势植物富集、转运能力钍核素强于铀核素;富集系数、转运系数均小于1,不是该污染物质的富集植物,不能直接利用当地植物进行土壤铀和钍核素修复,应引种乡土富集植物进行土壤污染修复。  相似文献   
406.
采用盆栽试验,研究了在0.3V/cm的外加直流电场作用下,博落回的生物量、富集铀(U)的性能和抗氧化酶活性,以及其根际土壤中有机酸含量、U和镉(Cd)的结合形态、植物根部U的价态、微生物群落结构的变化等.结果表明,施加直流电场后,博落回总生物量升高了15.33%~29.88%,其中电场+铀污染(DC+U)和电场+镉污染(DC+Cd)处理组的博落回对U和Cd的富集系数提高了90.84%和93.33%;土壤中草酸、酒石酸、琥珀酸、苹果酸和乳酸含量分别增加了18.36%~45.31%、58.62%~503.22%、15.71%~118.99%、12.34%~123.27%和25.97%~36.05%;过氧化物酶(POD)和谷胱甘肽过氧化物酶(GSH-PX)的活性分别提高了13.63%~34.82%和9.70%~28.64%;根际土壤中植物可利用态U、Cd所占比例显著增大;博落回根部的大部分U由稳定的U(IV)变成了更容易从地下部分向地上部分转移的U(VI);酸杆菌门(Acidobacteria)等细菌菌门和子囊菌门(Ascomycota)等真菌菌门比例升高,这些微生物通过提高酶活性增强了博落回对U、Cd的耐受性和富集作用.  相似文献   
407.
于平水期和丰水期同点位采集官厅水库、密云水库上游流域的地表水样品共计222件,分别测试了原水、悬浮物中TN、NH3-N、NO3--N和TP的含量,探讨氮、磷的分布规律及污染特征,并参照GB 3838-2002《地表水环境质量标准》进行评价。结果表明:1)研究区地表水处于富营养化状态,永定河水系氮、磷含量相对较高,高值点主要分布在洋河干流断面。2)主要河流的干流氮、磷高值点的出现均与上游的城市废水排放密切相关,应加大城市废水的治理力度,提高排污标准。3)TN 78.26%(丰水期)、91.59%(平水期)的样品劣于Ⅲ类,除洋河上流、桑干河上流和汤河水系外,其他水系大部分样点TN仅达劣Ⅴ类要求,但NO3--N和NH3-N大部分样品符合标准限制,建议制定标准时应加强对NO3--N的管控。4)TN 33.04%(丰水期)、14.02%(平水期)的样品不符合Ⅲ类要求,主要分布在洋河中段、壶流河和潮河中段水域。  相似文献   
408.
409.
铀U(Ⅵ)由于核裂变反应已被广泛用于核能利用和核武器开发,但铀矿开采与冶炼过程中,会向环境中释放一定量的铀。铀元素由于自身具有放射性危害和重金属毒性,因此,会引起一系列生态安全问题。为了实现铀污染控制与维持还原态UO2稳定性,在铀分离、还原等污染控制技术评述的基础上,着重阐述U(Ⅵ)被还原固定形成UO2(s)的稳定性及稳定性维持方法,并对铀污染治理进行了展望。  相似文献   
410.
广东省土壤镉含量影响因子解析与评估   总被引:3,自引:1,他引:2  
影响镉(Cd)含量的因子众多,包括自然影响因子和人为影响因子,而治理Cd污染首先应查明Cd污染来源及其影响因子,这对因地制宜制定Cd污染治理措施及指导相关产业布局具有重要意义.广东省地理状况复杂、经济发达,Cd含量分布区域间差异较大.因此,本文基于Cubist构建土壤Cd含量与相关影响因子关系模型,解析影响广东省土壤Cd含量的主要因子.结果表明:土壤pH值与土壤类型是影响广东省Cd含量最主要的因素,土壤Cd含量与土壤pH值呈正相关关系;赤红壤、砖红壤及紫色土中Cd含量相对较低,潮土、红壤、黄壤、水稻土及石灰土中Cd含量相对较高.Cd含量高值主要出现在第四纪、泥盆纪和石炭纪地质构造运动形成的土壤中.此外,植被指数、土壤粉粒、平均气温、高程、距道路及距河流距离也是影响广东省土壤Cd含量的主要因素.其中,土壤Cd含量与土壤粉粒、高程呈正相关关系,与植被指数、距道路距离、距河流距离呈负相关关系.本文研究结果可为土壤Cd污染治理提供科学的参考依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号