全文获取类型
收费全文 | 474篇 |
免费 | 104篇 |
国内免费 | 178篇 |
专业分类
安全科学 | 37篇 |
废物处理 | 29篇 |
环保管理 | 34篇 |
综合类 | 371篇 |
基础理论 | 130篇 |
污染及防治 | 88篇 |
评价与监测 | 51篇 |
社会与环境 | 9篇 |
灾害及防治 | 7篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 14篇 |
2021年 | 17篇 |
2020年 | 16篇 |
2019年 | 19篇 |
2018年 | 65篇 |
2017年 | 30篇 |
2016年 | 30篇 |
2015年 | 26篇 |
2014年 | 38篇 |
2013年 | 53篇 |
2012年 | 33篇 |
2011年 | 38篇 |
2010年 | 31篇 |
2009年 | 32篇 |
2008年 | 26篇 |
2007年 | 30篇 |
2006年 | 41篇 |
2005年 | 27篇 |
2004年 | 24篇 |
2003年 | 20篇 |
2002年 | 23篇 |
2001年 | 19篇 |
2000年 | 23篇 |
1999年 | 8篇 |
1998年 | 7篇 |
1997年 | 12篇 |
1996年 | 13篇 |
1995年 | 7篇 |
1994年 | 5篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1981年 | 1篇 |
排序方式: 共有756条查询结果,搜索用时 15 毫秒
681.
682.
为研究Na2SO4中毒SCR催化剂(V2O5-WO3/TiO2催化剂)对SO3生成特性的影响,采用湿式浸渍法制备w(Na)为3%的Na2SO4中毒SCR催化剂,并通过N2物理吸附/脱附、XRD(X射线衍射)技术、SEM(扫描电镜)、XPS(X射线光电子能谱)分析技术对催化剂的物理化学特性进行表征.结果表明:①随着反应温度的升高,所有催化剂上的SO3生成率逐渐增加.当温度升至490℃时,SCR催化剂上的SO3生成率为0.85%,而3% Na2SO4中毒SCR催化剂上的SO3生成率高达1.36%.SO42-的存在导致V-O-S增多,从而促进SO3的生成.②随入口ρ(SO2)的增加,SO3生成率呈下降的趋势.当入口ρ(SO2)为1 000 mg/m3时,3% Na2SO4中毒SCR催化剂上的SO3生成率为1.02%,而SCR催化剂上仅为0.60%.ρ(SO2)对SO3生成率的影响主要依赖于温度和催化剂活性位点数等.③N2物理吸附/脱附、XRD和SEM表征结果表明,与SCR催化剂相比,Na2SO4中毒SCR催化剂表面有Na2SO4的积聚,出现了裂纹和大孔隙,催化剂的比表面积和孔容下降,这些变化均不利于催化剂的催化性能;XPS结果表明,Na2SO4的加入提高了表面化学吸附氧含量,降低了活性组分中w(V4+)/w(V5+)的值.研究显示,相比于SCR催化剂,Na2SO4中毒SCR催化剂上的SO3生成率大幅增加. 相似文献
683.
六氯苯对原生动物四膜虫的生物毒性实验室研究 总被引:2,自引:0,他引:2
以原生动物嗜热四膜虫(TetrahymenathermophilaBF5)为靶生物,在PPYS培养基和无机盐培养基中,研究了生长稳定期间的四膜虫暴露于50μg/L、250μg/L和1000μg/LHCB的中短期生物毒性。研究结果表明,PPYS培养基中50μg/L的HCB对四膜虫的生长表现为促进作用,在试验时间内,四膜虫数量增加5%~15%。250μg/L和1000μg/L的HCB发生抑制作用。在250μg/L和1000μg/L的HCB中培养96h,四膜虫的数量分别降低到在同一时间无HCB存在情况下数量的63%和35%,168h时分别为42%和24%。在无机盐培养基中,3种浓度的HCB均对四膜虫的生长产生抑制作用,而且表现为急性和短期毒性。暴露于50μg/L、250μg/L和1000μg/L的HCB中96h,四膜虫的数量分别减少到同一时刻无HCB存在情况下数量的34%、24%和10%。可见,培养体系中营养物质的存在,可以降低和缓解HCB对四膜虫的生物毒性。 相似文献
684.
The polyfluorinated carboxylic acids 5:3 acid (C5F11CH2CH2CO2H) and 7:3 acid (C7F15CH2CH2CO2H) are major products from 6:2 FTOH (C6F13CH2CH2OH) and 8:2 FTOH (C8F17CH2CH2OH) aerobic biotransformation, respectively. The 5:3 and 7:3 acids were dosed into domestic WWTP activated sludge for 90 d to determine their biodegradability. The 7:3 acid aerobic biodegradability was low, only 1.7 mol% conversion to perfluoroheptanoic acid (PFHpA), whereas no transformation was observed previously in soil. In stark contrast, 5:3 acid aerobic biodegradability was enhanced 10 times in activated sludge compared to soil. The 5:3 acid was not activated by acyl CoEnzyme A (CoA) synthetase, a key step required for further α- or ß-oxidation. Instead, 5:3 acid was directly converted to 4:3 acid (C4F9CH2CH2CO2H, 14.2 mol%) and 3:3 acid (C3F7CH2CH2CO2H, 0.9 mol%) via “one-carbon removal pathways”. The 5:3 acid biotransformation also yielded perfluoropentanoic acid (PFPeA, 5.9 mol%) and perfluorobutanoic acid (PFBA, 0.8 mol%). This is the first report to identify key biotransformation intermediates which demonstrate novel one-carbon removal pathways with sequential removal of CF2 groups. Identified biotransformation intermediates (10.2 mol% in sum) were 5:3 Uacid, α-OH 5:3 acid, 5:2 acid, and 5:2 Uacid. The 5:2 Uacid and 5:2 acid are novel intermediates identified for the first time which confirm the proposed pathways. In the biodegradation pathways, the genesis of the one carbon removal is CO2 elimination from α-OH 5:3 acid. These results suggest that there are enzymatic mechanisms available in the environment that can lead to 6:2 FTOH and 5:3 acid mineralization. The dehydrogenation from 5:3 acid to 5:3 Uacid was the rate-limiting enzymatic step for 5:3 acid conversion to 4:3 acid. 相似文献
685.
Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions.Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples.The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts.Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks.Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5 mg d−1 kg−1 pig at swine finishing barns and from 2.3 to 45.2 g d−1 m−2 at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates.Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors. 相似文献
686.
利用铝粉研究了零价铝/酸(zero valent-aluminum acid system)体系对活性黑5染料的降解效果,并采用Design-expert 8.0 软件对单因素和因素之间的交互作用进行分析。结果表明,零价铝/酸体系对活性黑5脱色效果较好;在pH为0.87、温度为34.4℃、铝粉投加量为1.2 g/L,转速为160 r/min时,反应8 h后,活性黑去除率达到94.89%。采用响应面法和排列图分析,pH和温度是影响活性黑溶液去除率的主要因素,并通过UV-Vis光谱分析,对活性黑在零价铝/酸体系的降解规律进行了初步探讨。 相似文献
687.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对COD去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30 L/h、气体流量2.5 L/h、转速800 r/min、H2O2的投加量为1 mmol/L及Fe2+投加量为0.4 mmol/L的条件下,100 mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。 相似文献
688.
水和废水中BOD_5的测定 总被引:1,自引:0,他引:1
采用YSI 5 8型溶解氧测定仪 ,将该仪器的不同校正方法与碘量法进行比对 ,测定水和废水中的BOD5。结果表明该方法简便、快捷、经济 ,适用于大批量环境样品的测定 相似文献
689.
690.