首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   121篇
  国内免费   22篇
安全科学   10篇
废物处理   1篇
环保管理   3篇
综合类   66篇
基础理论   292篇
污染及防治   11篇
评价与监测   3篇
社会与环境   3篇
灾害及防治   5篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   47篇
  2017年   25篇
  2016年   26篇
  2015年   30篇
  2014年   39篇
  2013年   40篇
  2012年   21篇
  2011年   34篇
  2010年   27篇
  2009年   12篇
  2008年   19篇
  2007年   3篇
  2006年   3篇
  2005年   6篇
  2004年   14篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
排序方式: 共有394条查询结果,搜索用时 31 毫秒
171.
Abstract: The number of individuals translocated and released as part of a reintroduction is often small, as is the final established population, because the reintroduction site is typically small. Small founder and small resulting populations can result in population bottlenecks, which are associated with increased rates of inbreeding and loss of genetic diversity, both of which can affect the long‐term viability of reintroduced populations. I used information derived from pedigrees of four monogamous bird species reintroduced onto two different islands (220 and 259 ha) in New Zealand to compare the pattern of inbreeding and loss of genetic diversity among the reintroduced populations. Although reintroduced populations founded with few individuals had higher levels of inbreeding, as predicted, other factors, including biased sex ratio and skewed breeding success, contributed to high levels of inbreeding and loss of genetic diversity. Of the 10–58 individuals released, 4–25 genetic founders contributed at least one living descendent and yielded approximately 3–11 founder–genome equivalents (number of genetic founders assuming an equal contribution of offspring and no random loss of alleles across generations) after seven breeding seasons. This range is much lower than the 20 founder–genome equivalents recommended for captive‐bred populations. Although the level of inbreeding in one reintroduced population initially reached three times that of a closely related species, the long‐term estimated rate of inbreeding of this one population was approximately one‐third that of the other species due to differences in carrying capacities of the respective reintroduction sites. The increasing number of reintroductions to suitable areas that are smaller than those I examined here suggests that it might be useful to develop long‐term strategies and guidelines for reintroduction programs, which would minimize inbreeding and maintain genetic diversity.  相似文献   
172.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   
173.
Abstract: Widespread poaching prior to the 1989 ivory ban greatly altered the demographic structure of matrilineal African elephant (Loxodonta africana) family groups in many populations by decreasing the number of old, adult females. We assessed the long‐term impacts of poaching by investigating genetic, physiological, and reproductive correlates of a disturbed social structure resulting from heavy poaching of an African elephant population in Mikumi National Park, Tanzania, prior to 1989. We examined fecal glucocorticoid levels and reproductive output among 218 adult female elephants from 109 groups differing in size, age structure, and average genetic relatedness over 25 months from 2003 to 2005. The distribution in group size has changed little since 1989, but the number of families with tusked old matriarchs has increased by 14.2%. Females from groups that lacked an old matriarch, first‐order adult relatives, and strong social bonds had significantly higher fecal glucocorticoid values than those from groups with these features (all females R2= 0.31; females in multiadult groups R2= 0.46). Females that frequented isolated areas with historically high poaching risk had higher fecal glucocorticoid values than those in low poaching risk areas. Females with weak bonds and low group relatedness had significantly lower reproductive output (R2[U]=0.21). Females from disrupted groups, defined as having observed average group relatedness 1 SD below the expected mean for a simulated unpoached family, had significantly lower reproductive output than females from intact groups, despite many being in their reproductive prime. These results suggest that long‐term negative impacts from poaching of old, related matriarchs have persisted among adult female elephants 1.5 decades after the 1989 ivory ban was implemented.  相似文献   
174.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   
175.
Abstract: River‐dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62‐year‐long (1948–2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30–40 years.  相似文献   
176.
The persistence of endangered species may depend on the fate of a very small number of individual animals. In situ conservation alone may sometimes be insufficient. In these instances, the International Union for Conservation of Nature provides guidelines for ex situ conservation and the Convention on Biological Diversity (CBD) indicates how ex situ management can support the CBD's objectives by providing insurance policies for species. The circumstances that justify its use are uncertain. To evaluate the current in situ extinction risk and ex situ management of 43 critically endangered species of mammalian megafauna, we used nonmetric multidimensional scaling and geopolitical variables related to governance, economics, and national policy within their extant ranges. We then fitted generalized additive models to assess the contribution of each variable to the ordination. Fifteen (almost one-third) of the world's terrestrial mammalian megafauna are not the subject of any ex situ management. Seventy-three percent of these taxa occur in areas characterized by political uncertainty, such as border zones or areas affected by armed conflicts, mainly in Africa and the Middle East. A further 23% of taxa in ex situ programs do not meet sustainability criteria for inbreeding avoidance. Strategic conservation planning, such as the One Plan approach, may improve ex situ management for these taxa. Given the escalating trend in threats afflicting megafauna, ex situ management should be considered more rigorously, particularly in politically unstable regions, to achieve CBD Target 12 (prevent extinction of threatened species).  相似文献   
177.
Abstract: The level of endemism at a site may indicate species richness of the site. Nevertheless, assessing endemism levels in taxonomic groups such as plants may be difficult because the species richness of plants is high relative to species richness of other taxonomic groups (e.g., vertebrates). A major problem in determining whether plant species are endemic is the lack of standardization of the geographic extent of endemism: species are considered endemic to, for example, countries, continents, or states. We compiled a history of the concept of endemism as it applies to plants. The application of the concept to geographic distribution dates from the 19th century, when European explorers discovered many taxa exclusive to regions outside Europe. Two types of endemism, paleoendemism and neoendemism, were then acknowledged, according to evolutionary age, and these categories are still in use. In the 20th century, most of the research on endemism focused on explaining range restriction on the basis of cytological data, edaphic and geological factors, and phylogeny. This research led to a vast number of concepts, of which only edaphic endemism remains relatively well accepted. More recently, researchers suggest that competition may determine endemism in some cases. We suggest that plants be labeled as endemic only if their distribution occurs in a distinct ecological unit, such as a biome. On the basis of a literature review of the factors that cause range restriction, we categorized endemic taxa as paleoendemic, neoendemic, edaphically endemic, or suppressed endemic. For example, Schlechtendalia luzulifolia, is a rare forb that is a paleoendemic species of the granite and sandstone‐based grasslands of the Pampa. Levels of endemism in southern Brazilian grasslands are poorly known. We emphasize the importance of recognizing these grasslands as a single transnational biome so that levels of endemism of species therein can be assessed correctly.  相似文献   
178.
The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (EEo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the EEo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.  相似文献   
179.
Abstract: Quality of the agricultural matrix profoundly affects biodiversity and dispersal in agricultural areas. Vegetatively complex coffee agroecosystems maintain species richness at larger distances from the forest. Epiphytes colonize canopy trees and provide resources for birds and insects and thus effects of agricultural production on epiphytes may affect other species. We compared diversity, composition, and vertical stratification of epiphytes in a forest fragment and in two coffee farms differing in management intensity in southern Mexico. We also examined spatial distribution of epiphytes with respect to the forest fragment to examine quality of the two agricultural matrix types for epiphyte conservation. We sampled vascular epiphytes in a forest fragment, a shade polyculture farm, and a shade monoculture farm at 100 m, 200 m, and 400 m from the forest. Epiphyte and orchid richness was greater in the forest than in the monoculture but richness was similar in the forest and polyculture farm. Epiphyte species composition differed with habitat type, but not with distance from the forest. In the forest, epiphytes were distributed throughout tree canopies, but in the farms, epiphytes were primarily found on trunks and larger branches. Epiphyte richness and species similarity to forest species declined with distance from the forest fragment in the monoculture, but richness and similarity to forest species did not decline with distance from forest in the polyculture. This suggests polyculture coffee has greater conservation value. In contrast, monoculture coffee is likely a sink habitat for epiphytes dispersing from forests into coffee. Coffee farms differ from forests in terms of the habitat they provide and species composition, thus protecting forest fragments is essential for epiphyte conservation. Nonetheless, in agricultural landscapes, vegetatively complex coffee farms may contribute to conservation of epiphytes more than other agricultural land uses.  相似文献   
180.
Abstract: The tropical Andes harbor an extraordinarily varied concentration of species in a landscape under increasing pressure from human activities. Conservation of the region's native plants and animals has received considerable international attention, but the focus has been on terrestrial biota. The conservation of freshwater fauna, particularly the conservation of fishes, has not been emphasized. Tropical Andean fishes are among the most understudied vertebrates in the world. We estimate that between 400 and 600 fish species inhabit the diverse aquatic environments in the region. Nearly 40% of these species are endemic. Tropical Andean fishes are vulnerable to ongoing environmental changes related to deforestation, water withdrawals, water pollution, species introductions, and hydropower development. Additionally, their distributions and population dynamics may be affected by hydrologic alterations and warmer water temperatures associated with projected climate change. Presently, at least three species are considered extinct, some populations are endangered, and some species are likely to decline or disappear. The long‐term persistence of tropical Andean fishes will depend on greater consideration of freshwater systems in regional conservation initiatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号