首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   4篇
  国内免费   176篇
安全科学   21篇
废物处理   15篇
环保管理   57篇
综合类   357篇
基础理论   59篇
污染及防治   170篇
评价与监测   18篇
社会与环境   9篇
  2023年   13篇
  2022年   21篇
  2021年   23篇
  2020年   29篇
  2019年   33篇
  2018年   24篇
  2017年   29篇
  2016年   26篇
  2015年   42篇
  2014年   23篇
  2013年   45篇
  2012年   19篇
  2011年   50篇
  2010年   21篇
  2009年   39篇
  2008年   30篇
  2007年   39篇
  2006年   25篇
  2005年   21篇
  2004年   17篇
  2003年   15篇
  2002年   16篇
  2001年   23篇
  2000年   22篇
  1999年   11篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
排序方式: 共有706条查询结果,搜索用时 31 毫秒
261.
A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.
  相似文献   
262.
接枝羧基淀粉对贵金属离子吸附性能研究   总被引:5,自引:0,他引:5  
研究了接枝羧基淀粉(ISC)对贵金属离子Ag(Ⅰ),Pd(Ⅱ)、Pt(Ⅳ)的静态吸附性能和选择性及介质的PH对其吸附性能的影响,利用接枝羧基淀粉与Ag(Ⅰ)形成螯合物的红外光谱和X-射线光电子能谱数据(XPS)探讨了其吸附作用机理。  相似文献   
263.
● A crosslinked polyaniline/carbon nanotube NF membrane was fabricated. ● Electro-assistance enhanced the removal rate of the NF membrane for bisphenol A. ● Intermittent voltage-assistance can achieve nearly 100% removal of bisphenol A. ● Membrane adsorption–electro-oxidation process is feasible for micropollutant removal. Nanofiltration (NF) has attracted increasing attention for wastewater treatment and potable water purification. However, the high-efficiency removal of micropollutants by NF membranes is a critical challenge. Owing to the adsorption and subsequent diffusion, some weakly charged or uncharged micropollutants, such as bisphenol A (BPA), can pass through NF membranes, resulting in low removal rates. Herein, an effective strategy is proposed to enhance the BPA removal efficiency of a crosslinked polyaniline/carbon nanotube NF membrane by coupling the membrane with electro-assistance. The membrane exhibited a 31.9% removal rate for 5 mg/L BPA with a permeance of 6.8 L/(m2·h·bar), while the removal rate was significantly improved to 98.1% after applying a voltage of 2.0 V to the membrane. Furthermore, when BPA coexisted with humic acid, the membrane maintained 94% removal of total organic carbon and nearly 100% removal of BPA at 2.0 V over the entire filtration period. Compared to continuous voltage applied to the membrane, an intermittent voltage (2.0 V for 0.5 h with an interval of 3.5 h) could achieve comparable BPA removal efficiency, because of the combined effect of membrane adsorption and subsequent electrochemical oxidation. Density functional theory calculations and BPA oxidation process analyses suggested that BPA was adsorbed by two main interactions: π–π and hydrogen-bond interactions. The adsorbed BPA was further electro-degraded into small organic acids or mineralized to CO2 and H2O. This work demonstrates that NF membranes coupled with electro-assistance are feasible for improving the removal of weakly charged or uncharged micropollutants.  相似文献   
264.
用3种入侵植物的地上(O)和地下(U)凋落物浸提液(Le)对紫色土进行修饰,采用批处理法研究各Le修饰土样对金霉素(CTC)的等温吸附特征,分析pH值、离子强度和温度对CTC吸附的影响。结果表明:各Le修饰紫色土对CTC的吸附等温线最适用于Freundlich模型描述;当pH值为2,离子强度为0.1 mol/L和试验温度40 ℃时,一年蓬(Conyzaannumus)Le修饰紫色土对CTC的吸附效果最佳,最大吸附量为1.68 mmol/kg~7.94 mmol/kg;当Le修饰比例为100%时,OLe和ULe修饰紫色土对CTC的吸附量均达到最大,且OLe修饰紫色土对CTC的吸附效果相比ULe更佳。  相似文献   
265.
Recently, metal-based carbon materials have been verified to be an effective persulfate activator, but secondary pollution caused by metal leaching is inevitable. Hence, a green metalfree 3D macroscopic N-doped porous carbon nanosheets(NPCN) was synthesized successfully. The obtained NPCN showed high adsorption capacity of tetracycline(TC) and excellent persulfate(PS) activation ability, especially when calcined at 700 °C(NPCN-700). The maximum adsorption capacity of NPCN-700 was 121.51 mg/g by ...  相似文献   
266.
The aim of this study was to establish the bark of Eucalyptus tereticornis L. (EB) as a low cost bio-adsorbent for the removal of imidacloprid and atrazine from aqueous medium. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD) models were used to describe the kinetic data and rate constants were evaluated. Adsorption data was analysed using ten 2-, 3- and 4-parameter models viz. Freundlich, Jovanovic, Langmuir, Temkin, Koble–Corrigan, Redlich–Peterson, Sips, Toth, Radke–Prausnitz, and Fritz-Schluender isotherms. Six error functions were used to compute the best fit single component isotherm parameters by nonlinear regression analysis. The results showed that the sorption of atrazine was better explained by PSO model, whereas the sorption of imidacloprid followed the PFO kinetic model. Isotherm model optimization analysis suggested that the Freundlich along with Koble–Corrigan, Toth and Fritz-Schluender were the best models to predict atrazine and imidacloprid adsorption onto EB. Error analysis suggested that minimization of chi-square (χ2) error function provided the best determination of optimum parameter sets for all the isotherms.  相似文献   
267.
鄱阳湖作为中国最大的淡水湖,国际重要湿地,其生态环境保护与可持续发展意义重大。基于GIS技术,以鄱阳湖流域为研究区域,利用3个时期多源数据,首先运用土壤流失方程估算鄱阳湖流域土壤侵蚀量,计算土壤侵蚀模数,然后根据泥沙输移比估算水体的泥沙负荷,最后采用颗粒态氮磷营养盐迁移经验模型定量研究鄱阳湖流域非点源吸附态污染物N、P负荷的时空变化规律。结果显示:吸附态氮磷污染负荷在空间分布上呈现出四周高、中间低的特点,相对较高的区域位于流域中、上游,这主要由于该区域多为山地陡坡;相对略低的区域位于流域的下游地区,这主要因为该区域平原和丘陵交错分布,土壤侵蚀强度较低。时间变化上,全流域单位面积N、P吸附态污染物负荷大都呈现先增加后减少的趋势,同时减少的幅度较增加的幅度大。  相似文献   
268.
This study investigated adsorption of fulvic acid (FA) by single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT) and activated carbon. Adsorption of FA depends greatly on the adsorbent surface area and solution pH. SWCNT has higher adsorption than MWCNT and activated carbon. Lower E4/E6 (absorbance at 465 nm to that at 665 nm) and higher E2/E3 (absorbance at 250 nm to that at 365 nm) ratios of the residual FA in solution after adsorption than that of original FA in low pH ranges suggest that aromatic rich FA fractions with polar moieties readily adsorb on the adsorbents. The apparent interaction mechanisms between FA and CNT surfaces include electrostatic, hydrophobic, π-π and hydrogen-bond interactions. FA adsorption was reduced greatly with increasing pH because of the increase of electrostatic repulsion and the decrease of hydrophobic and hydrogen-bond interactions.  相似文献   
269.
Hematite, a type of inorganic-sorptive medium, was used for the removal of U (VI) from aqueous solutions. Variables of the batch experiments including solution pH, contact time, initial concentration, temperature, calcium and magnesium ions were studied. The results indicated that the adsorption capacities are strongly affected by the solution pH, contact time and initial concentration. A higher pH favors higher U (VI) removal. The adsorption was also affected by temperature and calcium and magnesium ions, but the effect is very weak. The maximum adsorption capacity (qm) only increased from 3.36 mg g−1 to 3.54 mg g−1 when the temperature was increased from 293 K to 318 K. A two-stage kinetic behavior was observed in the adsorption of uranium (VI): very rapid initial adsorption in a few minutes, followed by a long period of slower uptake. It was found that an increase in temperature resulted in a higher uranium (VI) loading per unit weight of the sorbent. The adsorption of uranium by hematite had good efficiency, and the equilibrium time of adsorbing uranium (VI) was about 6 h. The isothermal data were fitted with both Langmuir and Freundlich equations, but the data fitted the former better than the latter. The pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model were used to describe the kinetic data, but the pseudo-second-order kinetic model was the best. The thermodynamic parameter ΔG0 were calculated, the negative ΔG0 values of uranium (VI) at different temperatures confirmed the adsorption processes were spontaneous.  相似文献   
270.
Background, aim, and scope  Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (λ-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of λ-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of λ-CHT and CPM on soils. Materials and methods  Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg·kg−1. The treated soils were incubated for 2 weeks and then dried at 20°C. For each soil sample and at each soil Cu concentration, the adsorption of λ-CHT and CPM was measured using a batch equilibrium method. The concentration of λ-CHT was determined by HPLC, and the amount of λ-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Results  Without the addition of Cu, the adsorption of λ-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of λ-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg·kg−1, the adsorption coefficient (K d) of λ-CHT decreased from 12.2 to 5.9 L·kg−1 for Red soil, and from 26.1 to 16.8 L·kg−1 for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K d decreased from 9.4 to 0.2 L·kg−1 for Red soil and from 16.2 to 0.5 L·kg−1 for Black soil). Discussion  Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to λ-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical–chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the λ-CHT and CPM were calculated, the differences of which probably lead to the fact that λ-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Conclusions  Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) λ-CHT has lower solubility and a higher octanol–water partition coefficient value than CPM; (2) λ-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the λ-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg·kg−1 to 1,600 mg·kg−1, the adsorption coefficient of λ-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of λ-CHT and CPM. Recommendations and perspectives  It is important for environmental scientists and engineers to get a better understanding of soil–metal–organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号