An air pollution index (API) reporting system is introduced to selected cities of China for public communication on air quality data. Shanghai is the first city in China providing daily average API reports and forecasts. This paper describes the development of an artificial neural network (ANN) model for the API forecasting in Shanghai. It is a multiple layer perceptron (MLP) network, with meteorological forecasting data as the main input, to output the next day average API values. However, the initial version of the MLP model did not work well. To improve the model, a series of tests were conducted with respect to the training method and structure optimization. Based on the test results, the training algorithm was modified and a new model was built. The new model is now being used in Shanghai for API forecasting. Its performance is shown reasonably well in comparison with observation. The application of the old model was only weakly correlated with observation. In 1-year application, the correlation coefficients were 0.2314, 0.1022 and 0.1710 for TSP, SO2 and NOx, respectively. But for the new model, for over 8 months application, the correlation coefficients are raised to 0.6056, 0.6993 and 0.6300 for PM10, SO2, and NO2. Further, the new algorithm does not rely on manpower intervention so that it is now being applied in several other Chinese cities with quite different meteorological conditions. The structure of the model and the application results are presented in this paper and also the problems to be further studied. 相似文献
AbstractCement manufacturing is a process that results in the emission of significant quantities of suspended particulate matter (SPM) to the ambient air. An environmental forensic investigation was carried out in the surroundings of a major cement manufacturing unit at a place called Coimbatore in the southern Indian state of Tamil Nadu. The investigation was carried out to identify the contribution of the cement manufacturing unit to the SPM concentration of the surrounding air environment. The sampling points’ selection and sample collection were done following the principles outlined in the INTERPOL Manual for Pollution Crime Forensic Investigation. On-site monitoring of the air samples was carried out using Mini Laser Aerosol Spectrometer (GRIMM, Mini-LAS Model 11R). The instrument was capable of measuring particles ranging from 0.25 to 32 µm and classifying them into 31 size channels. The test results at majority of the monitoring locations were well above the limits specified in the National Ambient Air Quality Standards of India. Microscopic studies of the dust samples were carried out for surface texture and particle shape. The spatial distribution of particles was analysed using geographic information system (GIS) for the visual identification of the extent of the pollution by keeping the cement factory as the focal point. The results from the GIS and microscopic analysis established the role of the cement factory in the particulate matter pollution of its surroundings, specifically in the areas North-West of the factory. The successfully adopted procedure can serve as a guideline for the environmental forensic investigation of similar pollution incidences. 相似文献
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations. 相似文献
In this article we apply and test a methodology to estimate cumulative frequency distribution for air pollutant concentration from wind-speed data. We use the inverse relationship after Simpson et al. (Atmospheric Environment, 19, 75–82, 1985) between the opposing percentile values in the statistical distributions for air pollutant concentrations and wind-speed data. This relationship is valid, irrespective of the statistical distributions of both variables, if an inverse relationship between them is also applicable. The available data are five years of 8-h average carbon monoxide concentration and 8-h mean wind-speed, observed in Buenos Aires (Argentina). The performance of the obtained empirical expressions in estimating cumulative frequency distributions for 8-h CO is statistically evaluated. The results show that it is possible to obtain an acceptable cumulative frequency distribution for 8-h CO concentration at the site if the cumulative frequency distribution for wind-speed is known. Q–Q plots show a good agreement between estimated and observed values. From our data, the mean relative error of the estimations was found to be as much as 8.0%. 相似文献
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature. 相似文献