首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   3篇
  国内免费   31篇
安全科学   28篇
废物处理   9篇
环保管理   17篇
综合类   137篇
基础理论   21篇
污染及防治   54篇
评价与监测   40篇
社会与环境   1篇
  2023年   8篇
  2021年   11篇
  2020年   19篇
  2019年   3篇
  2018年   11篇
  2017年   11篇
  2016年   10篇
  2015年   8篇
  2014年   13篇
  2013年   20篇
  2012年   17篇
  2011年   21篇
  2010年   11篇
  2009年   13篇
  2008年   20篇
  2007年   18篇
  2006年   15篇
  2005年   10篇
  2004年   3篇
  2003年   10篇
  2002年   5篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1984年   1篇
  1979年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
81.
基于氨氮与纳氏试剂进行显色反应的原理,建立反应体系为1 mL的小体系淡水中氨氮的测定方法。新方法的显色剂用量为20μL、显色时间为10~30 min、盐度<0.5%、pH值为3~11,纳氏试剂以6 000 r/min、5 min进行离心处理,采用酶标仪96孔板在420 nm波长下测定显色反应溶液的吸光度。将该方法与《水质氨氮的测定纳氏试剂分光光度法》(HJ 535—2009)(国标法)测定氨氮的吸光度进行正交验证,结果表明2种方法具有良好的拟合度。新方法的检测范围从国标法的0~2.0 mg/L提升到0~4.8 mg/L。方法测定淡水中氨氮的质量浓度具有简便、连续、快速、高批量的优点,适用于实地、实时地测定淡水中的氨氮。  相似文献   
82.
为了准确而又快速地预报自来水中途生物性污染的危险程度,防止介水传染病发生,本文对生活污水样品进行了大量的实验研究,同时收集和分析了国内历次污染事件资料。经大显筛选实验发现,水中氨氮是代表大肠菌群进行预测预报污染程度的最佳化学指标。发生污染事件的危险性可分为四级,相应的大肠菌群故分别为100-、200-、1000-、10000-。  相似文献   
83.
用AQUA800辨别分析仪同时测定地面水中的氨、硝酸盐、亚硝酸盐、氯化物、正磷酸盐、总硬度和硅酸盐,是一种简便、迅速、准确、可靠的测定方法,样品无需预处理,精密度试验其变异系数分别为1.24%、2.18%、2.02%、2.67%、2.35%、3.57%、4.78%,加标回收率分别为103.5%、101.0%、95.0%、99.2%、97.6%、101.5%、98.0%,方法检测限分别为氨0.022mg/L,硝酸盐0.015mp/L,亚硝酸盐0.002tug/L,氯化物0.47mg/L,正磷酸盐0.015mg/L,总硬度17.6mg/L,硅酸盐0.55mg/L,能满足地面水中辨别分析仪同时测定氨、硝酸盐、亚硝酸盐点化物、正磷酸盐、总硬度和硅酸盐分析测定的要求。  相似文献   
84.
一台换热器换热管束发生了开裂泄漏.采取全面检验的方式,通过宏观检查、化学成分分析、断口微观形貌和能谱分析、金相分析等方法,对换热管开裂原因进行了分析.结果表明:该换热管开裂为氯化物应力腐蚀开裂.壳程介质循环冷却水中CI元素含量是应力腐蚀开裂的主要因素,结构缺陷、敏感的工作温度区间、水中溶解氧和含S杂质导致了应力腐蚀的快速发展.  相似文献   
85.
本文通过比较监测黑臭河流氨氮时人员比对的结果,对絮凝沉淀预处理过程的关键因素进行了改进。结果表明,直接在离心管中絮凝沉淀、离心、取样分析,精密度和准确度更好,而且方便快捷,值得推广。  相似文献   
86.
• Orange tree residuals biochar had a better ability to adsorb ammonia. • Modified tea tree residuals biochar had a stronger ability to remove phosphorus. • Partially-modified biochar could remove ammonia and phosphorus at the same time. • The real runoff experiment showed an ammonia nitrogen removal rate of about 80%. • The removal rate of total phosphorus in real runoff experiment was about 95%. Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.  相似文献   
87.
With the widespread use of ammonia in the process industry, more and more accidents were caused by ammonia leakage and dispersion. The dispersion of ammonia is determined by its physical properties, release source conditions and atmospheric environment. Full-scale numerical simulation based on CFD theory was carried out to study the dispersion law of ammonia in a food factory. It was found that ammonia concentrated on the symmetric plane and showed an upward movement near the source. Moreover, the effect of pressure on the dispersion of ammonia was explored showing that the concentration of ammonia near the source increased with the increase of pressure, while the dispersion of ammonia far from the source is mainly influenced by wind field. Last but not the least, the dangerous area completely covers the obstacle region according to the harmful concentration, but the lethal concentration range and explosion range both only existed near the release source. Correspondingly, the concentration of ammonia in the region far from the symmetric plane can be regarded as a safe area. When the accident happens, one should stay away from the release source and evacuate towards the sides in a timely manner. We hope that this work can provide an effective method in predicting the impact of ammonia dispersion and can arouse concerns over the public safety.  相似文献   
88.
Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where epiphytic macrolichen communities are used for estimating ammonia (NH3) deposition. Tissue N ranged from 0.6% to 2.11% with the highest values occurring in the southwestern Sierra Nevada (range: 1.38 to 2.11). Tissue N at 17 plots was elevated, as defined by a threshold concentration of 1.03%. Stepwise regression was used to determine the best predictors of tissue N from among a variety of environmental variables. The best model consisted only of longitude (r 2 = 0.64), which was reflected in the geographic distribution of tissue values: the southwestern Sierra Nevada, the high Sierras near the Tahoe Basin, and the Modoc Plateau, are three apparent N hotspots arranged along the tilted north–south axis of the study area. Withholding longitude and latitude, the best regression model suggested that NH3 estimates and annual number of wetdays interactively affect N accumulation (r 2 = 0.61; % N ∼ NH3 + wetdays + (NH3 × wetdays)). We did not expect perfect correspondence between tissue values and NH3 estimates since other N pollutants also accumulate in the lichen thallus. Additionally, other factors potentially affecting N content, such as growth rate and leaching, were not given full account.  相似文献   
89.
This on-site survey study was performed to determine the concentrations and emissions of aerial contaminants in the different types of swine houses in Korea and then to present beneficial information available for Korean pig producers to manage optimal air quality in swine house. The swine houses investigated in this research were selected based on three criteria; manure removal system, ventilation mode and growth stage of swine. Mean concentrations of aerial pollutants in swine houses were 8 ppm for ammonia, 300 ppb for hydrogen sulfide, 2 mg m−3 for total dust, 0.6 mg m−3 for respirable dust, 4 log(cfu m−3) for total airborne bacteria and 3 log(cfu m−3) for total airborne fungi, respectively. Mean emissions based on pig (liveweight; 75 kg) and area (m2) were 250 and 340 mg h−1 for ammonia, 40 and 50 mg h−1 for hydrogen sulfide, 40 and 50 mg h−1 for total dust, 10 and 15 mg h−1 for respirable dust, 1.0 and 1.3 log(cfu) h−1 for total airborne bacteria and 0.7 and 1.0 log(cfu) h−1 for total airborne fungi, respectively. In general concentrations and emissions of gases were relatively higher in the swine houses managed with deep-pit manure system with slats and mechanical ventilation mode than the different swine housing types whereas those of particulates and bioaerosol were highest in the naturally ventilated swine houses with deep-litter bed system.  相似文献   
90.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号