首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   36篇
安全科学   1篇
环保管理   2篇
综合类   42篇
基础理论   30篇
污染及防治   20篇
评价与监测   5篇
  2023年   5篇
  2022年   14篇
  2021年   13篇
  2020年   8篇
  2019年   19篇
  2018年   5篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有100条查询结果,搜索用时 78 毫秒
21.
• Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.  相似文献   
22.
Antibiotic pollution imposes urgent threats to public health and microbial-mediated ecological processes. Existing studies have primarily focused on bacterial responses to antibiotic pollution, but they ignored the microeukaryotic counterpart, though microeukaryotes are functionally important (e.g., predators and saprophytes) in microbial ecology. Herein, we explored how the assembly of sediment microeukaryotes was affected by increasing antibiotic pollution at the inlet (control) and across the outlet sites along a shrimp wastewater discharge channel. The structures of sediment microeukaryotic community were substantially altered by the increasing nutrient and antibiotic pollutions, which were primarily controlled by the direct effects of phosphate and ammonium (−0.645 and 0.507, respectively). In addition, tetracyclines exerted a large effect (0.209), including direct effect (0.326) and indirect effect (−0.117), on the microeukaryotic assembly. On the contrary, the fungal subcommunity was relatively resistant to antibiotic pollution. Segmented analysis depicted nonlinear responses of microeukaryotic genera to the antibiotic pollution gradient, as supported by the significant tipping points. We screened 30 antibiotic concentration-discriminatory taxa of microeukaryotes, which can quantitatively and accurately predict (98.7% accuracy) the in-situ antibiotic concentration. Sediment microeukaryotic (except fungal) community is sensitive to antibiotic pollution, and the identified bioindicators could be used for antibiotic pollution diagnosis.  相似文献   
23.
包埋法处理抗生素废水的试验研究   总被引:1,自引:0,他引:1  
采用包埋活性污泥对抗生素废水进行了试验研究,以COD、BOD5、NH3-N和TN去除率为指标,考察包埋活性污泥处理抗生素废水的可行性,结果表明,COD、BOD5、NH3-N和TN去除率分别为68.02%、78.80%、45.00%和49.11%.说明包埋法处理抗生素废水是可行的,尤其是去除TN上具有一定的优势.  相似文献   
24.
It is known that many kinds of fermentative antibiotics can be removed by temperature-enhanced hydrolysis from production wastewater based on their easy-to-hydrolyze characteristics. However, a few aminoglycosides are hard to hydrolyze below 100°C because of their stability expressed by high molecular energy gap (ΔE). Herein, removal of hard-to-hydrolyze kanamycin residue from production wastewater by hydrothermal treatment at subcritical temperatures was investigated. The results showed the reaction temperature had a significant impact on kanamycin degradation. The degradation half-life (t1/2) was shortened by 87.17-fold when the hydrothermal treatment temperature was increased from 100°C to 180°C. The t1/2 of kanamycin in the N2 process was extended by 1.08-1.34-fold compared to that of the corresponding air process at reaction temperatures of 140-180°C, indicating that the reactions during hydrothermal treatment process mainly include oxidation and hydrolysis. However, the contribution of hydrolysis was calculated as 75%-98%, which showed hydrolysis played a major role during the process, providing possibilities for the removal of kanamycin from production wastewaters with high-concentration organic matrices. Five transformation products with lower antibacterial activity than kanamycin were identified using UPLC-QTOF-MS analysis. More importantly, hydrothermal treatment could remove 97.9% of antibacterial activity (kanamycin EQ, 1,109 mg/L) from actual production wastewater with CODCr around 100,000 mg/L. Furthermore, the methane production yield in anaerobic inhibition tests could be increased about 2.3 times by adopting the hydrothermal pretreatment. Therefore, it is concluded that hydrothermal treatment as a pretreatment technology is an efficient method for removing high-concentration hard-to-hydrolyze antibiotic residues from wastewater with high-concentration organic matrices.  相似文献   
25.
Previous studies on environmental antibiotics resistance genes(ARGs) have focused on the pollution sources such as wastewater treatment plants, aquaculture and livestock farms,etc. Few of them had addressed this issue in a regional scale such as river catchment. Hence,the occurrence and abundances of 23 ARGs were investigated in surface water samples collected from 38 sites which located from the river source to estuary of the Beijiang River.Among them, 11 ARGs were frequently detected in this region and 5 ARGs(sul I, sul II, tet B,tet C, and tet W) were selected for their distribution pattern analysis. The abundances of the selected ARGs were higher in the upstream(8.70 × 10~6 copies/ng DNA) and downstream areas(3.17 × 10~6 copies/ng DNA) than those in the midstream areas(1.23 × 10~6 copies/ng DNA), which was positively correlated to the population density and number of pollution sources. Pollution sources of ARGs along the Beijiang River not only had a great impact on the abundances and diversity, but also on the distribution of specific ARGs in the water samples. Both sul I and sul II were likely originated from aquaculture farms and animal farms,tet W gene was possibly associated with the mining/metal melting industry and the electric waste disposal and tet C gene was commonly found in the area with multiple pollution sources.However, the abundance of tet B was not particularly related to anthropogenic impacts. These findings highlight the influence of pollution sources and density of population on the distribution and dissemination of ARGs at a regional scale.  相似文献   
26.
Abstract

Although the prevalence and concentrations of antibiotic resistance genes (ARGs) in aquaculture is receiving increasing scientific interest, there is little understanding of the direct sources and dissemination pathways of ARGs in marine aquaculture-reared organisms. This study investigated the dynamics of ARGs and the bacterial community throughout the rearing period in a typical marine aquaculture farm in South China. The results demonstrated that sul1 and qnrD were predominant in the sediment, and qnrD and qnrA were predominant in the intestinal tracts of shrimps. Network analysis showed that the chemical oxygen demand, total organic carbon, dissolved organic carbon, suspended solids, and total phosphorus were positively correlated with the predominant ARGs. The results of the network and source tracking analyses indicate that environmental factors and the bacterial community may drive the dissemination of ARGs dissemination in the environment and in shrimp reared by marine aquaculture, and sediment is the most direct and important medium in this dissemination. These results aid in improving our understanding of the sources, level, and dissemination of ARGs in marine aquaculture.  相似文献   
27.
The spreading of extended-spectrum β-lactamases (ESBL)-producing thermotolerant coliforms (TC) in the water environment is a threat to human health but little is known about ESBL-producing TCs in the Yangtze River. We received 319 ESBL-producing stains obtained from the Chongqing basin and we investigated antibiotic susceptibility, bla gene types and the presence of integrons and gene cassettes. 16.8% of TC isolates were ESBL-producing bacteria and blaTEM+CTx-M was the predominant ESBL type. 65.2% of isolates contained class 1 integrons, but only 3 carried intI 2. Gene cassettes were amplified and sequenced. aadA, drfA, cmlA, sat1, aar3 and two ORF cassettes were found. In conclusion, Yangtze River is heavily polluted by ESBL-producing TC bacteria and the combined bla gene type could enhance antibiotic resistance. Class 1 integrons were widespread in ESBL-producing isolates and play an important role in multi-drug resistance. Characterization of gene cassettes could reveal the dissemination of antibiotic resistance genes.  相似文献   
28.
Most veterinary drugs enter the environment via manure application. However, it is unclear how these substances interact with soil biota. Therefore, it was the aim of the present study to investigate the effects of manure containing different concentrations of the antibiotic sulfadiazine (SDZ) on the soil microbial communities. It was shown that manure alone has a stimulating effect on microbial activity. Only potential nitrification was negatively influenced by manure application. The addition of SDZ to the manure reduced microbial activity. Depending on the SDZ concentration, levels of activity were in the range of the control soil without manure application. Also, selected processes in nitrogen turnover were negatively influenced by the addition of SDZ to the manure, with nitrification being the only exception. The effects were visible for up to 4 days after application of the manure with or without SDZ and were correlated with the bioavailability of the antibiotic.  相似文献   
29.
The black soldier fly larvae (BSFL) have been successfully applied to treat various organic wastes. However, the impacts of heavy metals on antibiotic resistance in the BSFL guts are poorly understood. Here, we investigated the effect of copper (exposure concentrations of 0, 100 and 800 mg/kg) on the antibiotic and metal resistance profiles in BSFL guts. A total of 83 antibiotic resistance genes (ARGs), 18 mobile genetic elements (MGEs) and 6 metal resistance genes (MRGs) were observed in larval gut samples. Exposure to Cu remarkably reduced the diversity of ARGs and MGEs, but significantly enhanced the abundances of gut-associated ARGs and MRGs. The levels of MRGs copA, czcA and pbrT were dramatically strengthened after Cu exposure as compared with CK (increased by 2.8–13.5 times). Genera Enterococcus acted as the most predominant potential host of multiple ARG, MGE and MRG subtypes. Meanwhile, high exposure to Cu aggravated the enrichment of potential pathogens in BSFL guts, especially for Escherichia, Enterococcus and Salmonella species. The mantel test and procrustes analysis revealed that the gut microbial communities could be a key determinant for antibiotic and metal resistance. However, no significant positive links were observed between MGEs and ARGs or MRGs, possibly suggesting that MGEs did not play a crucial role in shaping the ARGs or MRGs in BSFL guts under the stress of Cu. These findings extend our understanding on the impact of heavy metals on the gut-associated antibiotic and metal resistome of BSFL.  相似文献   
30.
Polymyxin B (PMB) is considered as the last line of antibiotic defense available to humans. The environmental effects of the combined pollution with PMB and heavy metals and their interaction mechanisms are unclear. We explored the effects of the combined pollution with PMB and arsenic (As) on the microbial composition of the soil and in the earthworm gut, as well as the spread and transmission of antibiotic resistance genes (ARGs). The results showed that, compared with As alone, the combined addition of PMB and As could significantly increase the bioaccumulation factor and toxicity of As in earthworm tissues by 12.1% and 16.0%, respectively. PMB treatment could significantly increase the abundance of Actinobacteria in the earthworm gut (from 35.6% to 45.2%), and As stress could significantly increase the abundance of Proteobacteria (from 19.8% to 56.9%). PMB and As stress both could significantly increase the abundance of ARGs and mobile genetic elements (MGEs), which were positively correlated, indicating that ARGs might be horizontally transferred. The inactivation of antibiotics was the main resistance mechanism that microbes use to resist PMB and As stress. Network analysis showed that PMB and As might have antagonistic effects through competition with multi-drug resistant ARGs. The combined pollution by PMB and As significantly promoted the relative abundance of microbes carrying multi-drug resistant ARGs and MGEs, thereby increasing the risk of transmission of ARGs. This research advances the understanding of the interaction mechanism between antibiotics and heavy metals and provides new theoretical guidance for the environmental risk assessment and combined pollution management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号