首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   48篇
  国内免费   99篇
安全科学   52篇
废物处理   4篇
环保管理   42篇
综合类   285篇
基础理论   43篇
污染及防治   121篇
评价与监测   121篇
社会与环境   29篇
灾害及防治   5篇
  2024年   1篇
  2023年   23篇
  2022年   13篇
  2021年   12篇
  2020年   21篇
  2019年   14篇
  2018年   19篇
  2017年   18篇
  2016年   22篇
  2015年   23篇
  2014年   45篇
  2013年   21篇
  2012年   41篇
  2011年   47篇
  2010年   36篇
  2009年   42篇
  2008年   39篇
  2007年   31篇
  2006年   23篇
  2005年   10篇
  2004年   19篇
  2003年   11篇
  2002年   15篇
  2001年   17篇
  2000年   12篇
  1999年   18篇
  1998年   19篇
  1997年   19篇
  1996年   7篇
  1995年   21篇
  1994年   15篇
  1993年   5篇
  1992年   13篇
  1991年   5篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有702条查询结果,搜索用时 31 毫秒
551.
Atmospheric stability is the most important parameter affecting dilution of air pollutants. It plays a very important role in the investigation of parameters that affect ambient pollutant concentrations, especially in the case of complex terrain areas. In this study, the classification of atmospheric stability by Pasquill-Turner classes and any associated variation of ambient PM10 (particles with aerodynamic diameter<10 microm) concentrations for a region of complex terrain is investigated. Real experimental meteorological and PM10 data are used for a 2-year period from one observation station far distant from the main stack sources and they are related with the classified atmospheric stability categories in an hourly and monthly based distribution. A more detailed analysis is carried out during PM10 episodes for the same period in order to reveal the governing worst-case atmospheric conditions.  相似文献   
552.
The organic chemical composition of the fine fraction of atmospheric particulate matter in Athens has been studied, in order to establish emission sources. The results of the analyses of the aliphatic fraction indicate that all samples contain n-alkanes ranging from C14 to C32, with C25, C26, C27 and C29 being the more abundant congeners. Fossil fuels biomarkers such as extended tricyclic terpanes (hopanes, steranes) and isoprenoid hydrocarbons (pristane, phytane) were observed in our samples on a daily basis. Source reconciliation was conducted using molecular diagnostic ratios (such as the carbon preference index – CPI). The mean CPI value (1.84) indicates the mixed origin of the Athenian fine particles. The notable presence of an unresolved complex mixture or “hump” of hydrocarbons in our gas chromatograms is indicative of petrogenic hydrocarbon inputs. An approximate measure of this kind of contamination is the ratio of the concentrations of unresolved components to the resolved n-alkanes and other major compounds (U:R). The high U:R value of 25.25 further confirmed the major contribution of fossil fuels. Yet, the percent contribution of leaf wax n-alkanes (25.15%) indicated the parallel contribution of biogenic sources. This work supports the conclusion that vehicular emissions were the major source of aliphatic organic compounds with a smaller contribution of biogenic n-alkanes during the study period in Athens.  相似文献   
553.
This work aimed at comparing the dynamics of atmospheric metal accumulation by the lichen Flavoparmelia caperata and bark of Platanus hybrida over different periods of time. Transplants were exposed in three Portuguese coastal cities. Samples were retrieved (1) every 2 months (discontinuous exposure), or (2) after 2-, 4-, 6-, 8- and 10-month periods (continuous exposure), and analysed for Cu, Ni and Pb. Airborne accumulation of metals was essentially independent of climatic factors. For both biomonitors [Pb]>[Ni]>[Cu] but Pb was the only element for which a consistent pattern of accumulation was observed, with the bark outperforming the lichen. The longest exposure periods hardly ever corresponded to the highest accumulation. This might have been partly because the biomonitors bound and released metals throughout the exposure, each with its own dynamics of accumulation, but both according to the environmental metal availability.  相似文献   
554.
Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995–2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3 PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.  相似文献   
555.
Background, aim, and scope  Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. Materials and methods  The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. Results  This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. Discussion  In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Conclusions  Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15–22%). Recommendations and perspectives  To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.  相似文献   
556.
Fog water samples were collected in the months of December and January during 1998–2000 at Agra, India. The samples were analyzed for pH, major anions (F, Cl, SO4 2−, NO3 , HCOO and CH3COO), major cations (Ca2+, Mg2+, Na+ and K+) and NH4 + using ion chromatography, ICP-AES and spectrophotometer methods, respectively. pH of fog water samples ranged between 7.0 and 7.6 with a volume weighted mean of 7.2, indicating its alkaline characteristic. NH4 + contributed 40%, SO4 2− and NO3 accounted for 28%, while Ca2+, Mg2+, Na+ and K+ accounted for 16% of the total ionic concentration. The ratios of Mg2+/Ca2+ and Na+/Ca2+ in fog water indicates that 50–75% of fog water samples correspond to the respective ratios in local soil. Significant correlation between Ca2+, Mg2+, Na+ and K+ suggests their soil origin. The order of neutralization, NH4 + (1.4) > Ca2+ (0.28) > Mg2+ (0.12), indicates that NH4 + is the major neutralizing species. Fog water and atmospheric alkalinity were also computed and were found to be 873 and 903 neqm−3, respectively. Both of these values are higher than values reported from temperate sites and thus indicate that at the present level of pollutants, there is no risk of acid fog problem. The study also shows that the alkaline nature of fog water is due to dissolution of ammonia gas and partly due to interaction of fog water with soil derived aerosols.  相似文献   
557.
Hurricane as one of the most destructive natural hazards can make a devastating impact on the industrial equipment, especially atmospheric storage tanks, leading to the release of stored chemicals and disastrous safety and environmental issues. These catastrophic consequences are caused not only by strong winds but also by the torrential rainfall and inundating floods. The objective of this study is to present a risk-based methodology for assessing and reducing the vulnerability of atmospheric storage tanks to hurricanes. Considering the shell buckling, flotation, sliding, and roof sinking as dominant failure modes of atmospheric storage tanks during hurricanes, Bayesian network (BN) has been employed to combine the failure modes while considering their conditional dependencies. The probability updating feature of the developed BN was employed to indicate that the flood is the most critical hazard during hurricanes while the impact of wind and rainfall cannot be neglected. Extending the developed BN to an influence diagram, the cost-benefit filling of storage tanks with water prior to the advent of hurricanes was shown as a viable measure for reducing the damage probability. The results show that the proposed methodology can be used as an effective decision support tool for assessing and reducing the vulnerability of atmospheric storage tanks to natural hazards.  相似文献   
558.
Aquatic ecosystem sustainability around the globe is facing crucial challenges because of increasing anthropogenic and natural disturbances. In this study, the Tianchi Lake, a typical cold-water lake and a UNESCO/MAB(Man and Biosphere) nature reserve located in high latitude and elevation with the relatively low intensity of human activity was chosen as a system to examine the linkages between climate change and eutrophication. As a part of the UNESCO Bogda Man and Biosphere Reserve, Tianchi Lake has been well preserved for prevention from human intervention, but why has it been infected with eutrophication recent years? Our results show that climate change played a significant role in the eutrophication in the Tianchi Lake. Increased temperature, changed precipitation pattern and wind-induced hydrodynamic fluctuations in the summer season were suggested to make a major contribution to the accelerated eutrophication. The results also showed that the local temperature and precipitation changes were closely linked to the large-scale atmospheric circulation, which opens the door for the method to be applied in other regions without local climatic information. This study suggests that there is an urgent need to take into consideration of climate change adaptation into the conservation and management of cold-water lakes globally.  相似文献   
559.
南京北郊能见度变化中二次无机盐消光的重要作用   总被引:1,自引:1,他引:0  
利用2013年5月~2014年5月的能见度和大气气溶胶化学组分资料,分析南京北郊能见度变化特征、气溶胶化学组分与能见度变化的关联及其对大气消光的贡献,识别在能见度变化中二次无机盐消光的重要作用.结果表明,观测期间平均能见度为(6.78±3.68)km,能见度存在显著的季节变化.粒径小于2.1μm的细粒子对能见度降低有较大影响,SO2-4、NO-3、NH+4和OC是细粒子主要成分,其中二次无机离子对重霾日能见度恶化具有重要贡献.利用修正的IMPROVE方程重建观测期间消光系数,均值为(527.2±295.2)Mm-1,PM2.1化学组分中硫酸铵、硝酸铵以及有机物对消光系数贡献最大,达到80.6%.尽管在清洁日(VR10 km)有机物的消光贡献高达43.51%,但随着能见度降低,有机物消光贡献减少,二次无机盐组分消光贡献增加,在低能见度的重霾日(VR5 km)二次无机盐消光贡献达到58.96%,表明二次无机盐消光对能见度恶化具有重要作用.  相似文献   
560.
In the buoyancy and turbulence-driven atmospheric circulations (BTDAC) that occur over urban areas where the approach means wind speeds are very low (less than turbulent fluctuations and typically < 3 m/sec), the surface temperatures are significantly higher than those in the external rural areas, and the atmosphere above the mixing layer is stably stratified. In this paper, the mechanisms of BTDAC formation are studied through laboratory experiments and modelling, with additional low-level inflow from external rural areas and a divergent outflow in the opposite direction in the upper part of the mixed layer. Strong turbulent plumes in the central region mix the flow between lower and higher levels up to the inversion height. There are shear-driven turbulent eddies and weaker buoyant plumes around the periphery of the urban area. As the approach flow is very weak, the recirculating streamlines within the dome restrict the ventilation, and the dispersion of pollution emitted from sources below the inversion height leading to a rise in the mean concentration. Low-level air entrained from rural areas can, however, improve ventilation and lower this concentration. This trend can also be improved if the recirculating structure of the BTDAC flow pattern over urban areas breaks down as a result of the surface temperature distribution not being symmetrical, or as the approach wind speed increases to a level comparable with the mean velocity of circulation, or (except near the equator) the urban area is large enough that the Coriolis acceleration is significant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号