首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   99篇
  国内免费   400篇
安全科学   30篇
废物处理   6篇
环保管理   51篇
综合类   794篇
基础理论   140篇
污染及防治   35篇
评价与监测   78篇
社会与环境   48篇
灾害及防治   50篇
  2024年   5篇
  2023年   19篇
  2022年   37篇
  2021年   45篇
  2020年   44篇
  2019年   42篇
  2018年   50篇
  2017年   52篇
  2016年   65篇
  2015年   73篇
  2014年   66篇
  2013年   64篇
  2012年   78篇
  2011年   101篇
  2010年   75篇
  2009年   54篇
  2008年   37篇
  2007年   66篇
  2006年   48篇
  2005年   44篇
  2004年   30篇
  2003年   27篇
  2002年   27篇
  2001年   20篇
  2000年   14篇
  1999年   16篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   9篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
排序方式: 共有1232条查询结果,搜索用时 0 毫秒
981.
天津2009年3月气溶胶化学组成及其消光特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
2009年3月,采集天津城区PM10和PM2.5样品,分析其中的水溶性无机离子、有机碳(OC)和元素碳(EC),并估算其二次有机碳(SOC)浓度及消光系数.结果表明,天津城区PM10和PM2.5污染严重,水溶性无机离子和含碳物质在PM10中的比例为24.8%和10.0%,在PM2.5中的比例为26.6%和13.9%;SO42-、NO3-和Ca2+是主要的无机离子,霾日天气有利于SO2和NO2向硫酸盐和硝酸盐的二次转化;通过OC/EC最小比值法估算SOC的浓度,表明SOC与OC的比值分别为38%(PM10)和24%(PM2.5),霾日天气有利于SOC生成;二次离子(SO42-,NO3-和NH4+)、粗粒子、OC和EC是大气消光的主要贡献者,其消光贡献比例分别为33.1%, 22.6%,22.0%和15.6% 采用化学组分和相对湿度可以较好的拟合大气消光系数及大气能见度.  相似文献   
982.
目的 制定安装于带温控装置吊舱内的机载外挂电子设备挂飞可靠性试验剖面,并提出一种安装于带温控装置吊舱内的机载外挂电子设备挂飞可靠性试验方法。方法 结合机载外挂电子设备的典型任务剖面及其复杂多样的环境条件,以某机载侦察相机为例,给出带温控装置吊舱内的机载外挂电子设备可靠性鉴定试验中试验方案的选择依据,然后根据GJB 899A—2009中的温度应力、振动应力简化处理原则和典型任务剖面的持续时间及其占比,得到温度、振动应力条件,并合成挂飞可靠性试验剖面。结果 使用该方法对某机载侦察相机的温度、振动应力进行处理,得到了带温控装置的吊舱内的机载外挂电子设备挂飞可靠性试验剖面。结论 提出的带温控装置吊舱内的机载外挂电子设备挂飞可靠性试验剖面设计方法,为安装于带温控装置的吊舱内的机载外挂电子设备开展可靠性鉴定试验提供了指导。  相似文献   
983.
地表臭氧对植物具有显著毒害作用,矮菜豆(Phaseolus vulgaris L.)已被证实对臭氧非常敏感.选用对臭氧敏感性不同的矮菜豆(R123,臭氧耐受性及S156,臭氧敏感性)分别在3个地点(北京昌平、北京生态中心、哈尔滨市)进行室外直接暴露实验,旨在探讨当前环境臭氧浓度对矮菜豆生长的影响.结果表明,生态中心和昌平两地菜豆在当前臭氧浓度下叶片都出现严重臭氧损伤症状,整个生长季S156型菜豆平均臭氧损伤比例比R123型菜豆高23.5%;臭氧损伤自开花期开始,开花期至结荚期损伤加剧,在豆荚成熟期臭氧损伤比例达到最大值.豆荚产量对比发现,昌平和生态中心两地S156型与R123型豆荚产量比值分别为0.48和0.24,哈尔滨地区为0.73,二者比值为1视为生长不受臭氧影响.可见,北京地区较高的环境臭氧浓度已使敏感性作物矮菜豆显著减产.  相似文献   
984.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   
985.
天津地区冬季总悬浮颗粒物中PAHs污染特征   总被引:13,自引:0,他引:13  
采集并分析了天津不同区县13个样点冬季总悬浮颗粒物(TSP)中16种优控多环芳烃(PAHs)含量.结果表明不同样品间PAHs含量差异明显,东部开发区和中北部区县含量明显高于其它地区,大港油田的颗粒物中PAHs含量很低,市区、南部区县和北部山区居中.根据毒性等效因子计算了等效浓度,不同样品PAHs总等效浓度差异不大,占总浓度50%的高环PAHs毒性贡献达90%.  相似文献   
986.
2014年10月至11月间,在北京城区开展PM_(2.5)监测并对其中的水溶性离子进行离线及在线分析.其中NO_3~-、SO_4~(2-)和NH_4~+在不同观测阶段均是PM_(2.5)中的主要离子,APEC期间三者总浓度为(26.8±22.5)μg·m~(-3),占PM2.5质量浓度的(41.7±8.5)%,占所测水溶性离子组分的(84.7±5.0)%;APEC期间NO-3浓度水平较高,对PM_(2.5)贡献最大.对APEC期间水溶性离子的累积趋势研究发现,NO_3~-、SO_4~(2-)、NH_4~+和Cl~-均经历了3个不同的累积过程,除气象条件外,本地源排放及区域污染引起的累积效应仍不可忽视.对颗粒物酸性特征研究发现,不同观测期间,颗粒物中主要水溶性离子浓度虽有不同,但北京秋末冬初颗粒物无明显酸化特征.  相似文献   
987.
通过分析2005年3月至2006年1月间北京市东南郊3个采样点大气总悬浮颗粒物(TSP)样品中多环芳烃(PAHs)的浓度,对北京市东南郊大气TSP中的多环芳烃的来源进行了解析.4个季节中16种多环芳烃组分比例变化反映出各个季节PAHs来源的变化;各方向风频数与PAHs浓度的相关分析表明,研究区内PAHs浓度与西北方向的污染来源贡献密切相关;利用比值法进行源解析,发现研究区PAHs的主要来源为燃煤,此外机动车和焦炉源也可以识别出来;应用因子分析和多元线性回归计算出3个采样点各PAHs源的相对贡献率.  相似文献   
988.
表面活性剂在北京碱性土壤中的吸附行为研究   总被引:8,自引:0,他引:8  
通过静态吸附实验,研究了北京碱性土壤对阴离子表面活性剂SDS、阳离子表面活性剂CTAB和非离子表面活性剂Tween80的吸附行为,考察了温度对表面活性剂吸附的影响.结果表明:7种不同土样对SDS、CTAB和Tween80的吸附等温线均较好地符合Langmuir吸附模式,其吸附能力的大小顺序为2号轻壤土》轻粘土》中壤土》砂壤土》5号轻壤土》重壤土》紧砂土,这主要是由于7种土样的pH、有机质含量和机械组成不同的缘故;同一土壤中,CTAB的吸附量》Tween80的吸附量》SDS的吸附量;温度的升高,不利于SDS和CTAB在土壤中的吸附,而有利于Tween80的吸附.  相似文献   
989.
作为反映大气气溶胶垂直分布的重要参量,气溶胶标高被广泛应用于气溶胶反演及模型订正研究中.为研究气溶胶标高时空变化规律并构建其简易计算模型,基于2009~2016年气象站点观测资料及MODIS卫星反演数据,利用Peterson模型及多元回归分析对冀中南平原区气溶胶标高进行了估算分析.研究结果表明:区域气溶胶标高夏季最高,...  相似文献   
990.
利用OBS2200车载测试系统,对天津市的道路行驶车辆进行测试,在3种不同交通流特征(交通高峰期、低峰期和平峰期)下获得了道路车载排放污染物(HC、CO、NOx和CO2)的逐秒数据,结果显示,高峰期HC和CO平均排放率(0.027±0.018 g/s和0.330±0.196 g/s)明显高于低峰期和平峰期,大约分别是低峰期的5.4倍和4.3倍,平峰期的3.9倍和9.2倍。低峰期NOx和CO2平均排放率(0.006±0.006 g/s和1.904±0.960 g/s)稍高于高峰期和平峰期。加速工况下4种排放物的平均排放率:0.022±0.019 g/s、0.243±0.234 g/s、0.007±0.007 g/s和1.766±0.946 g/s,大约分别是减速工况下4种排放物平均排放率的1.1倍、1.4倍、2.3倍和1.9倍。随着加速度增大4种排放物的排放率逐渐增大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号