首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   0篇
  国内免费   29篇
安全科学   3篇
废物处理   56篇
环保管理   15篇
综合类   80篇
基础理论   27篇
污染及防治   158篇
评价与监测   1篇
社会与环境   4篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   30篇
  2012年   15篇
  2011年   34篇
  2010年   7篇
  2009年   14篇
  2008年   23篇
  2007年   20篇
  2006年   27篇
  2005年   13篇
  2004年   12篇
  2003年   18篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   16篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
131.
The plasticizer di (2-ethylhexyl) phthalate (DEHP) and its metabolites are considered ubiquitous contaminants, which have a range of implications on the environment and human health. This work considered several alternative compounds with structural features similar to DEHP. This added to the understanding of why DEHP is so poorly biodegraded once it enters the environment. These alternative compounds were based on 2-ethylhexyl diesters of maleic acid (cis-isomer), fumaric acid (trans-isomer) and succinic acid (saturated analogue). The rates of biodegradation by the common soil bacterium Rhodococcus rhodocrous were shown to be dependent on the structure of the central unit derived from the diacid used to make the ester. The diacid components of DEHP and the maleate both had a cis orientation and they were the two that were slow to biodegrade. Plasticizing properties were also compared and, because the ester of the saturated succinic acid was degraded quickly and also had good plasticizing properties, it was concluded that the succinic esters of straight chain alcohols would make the best green plasticizers. The maleate ester had excellent plasticizing properties but this is mitigated by a significant resistance to biodegradation.  相似文献   
132.
One of the main challenges that face successful biofiltration is the erratic loading pattern and long starvation periods. However, such patterns are common in practical applications. In order to provide long-term stable operation of a biofilter under these conditions, a cyclic adsorption/desorption beds system with flow switching was installed prior to a biofilter. Different square waves of a mixture containing n-hexane and benzene at a 2:1 ratio were applied to the cyclic adsorption/desorption beds and then fed to a biofilter. The performance of this integrated system was compared to a biofilter unit receiving the same feed of both VOCs. The cyclic adsorption/desorption beds unit successfully achieved its goal of stabilizing erratic loading even with very sharp peaks at the influent concentration equalizing influent concentrations ranging from 10-470 ppmv for n-hexane to 30-1410 ppmv for benzene. The study included different peak concentrations with durations ranging from 6 to 20 min. The cyclic beds buffered the fluctuating influent load and the followed biofilter had all the time a continuous stable flow. Another advantage achieved by the cyclic adsorption/desorption beds was the uninterrupted feed to the biofilter even during the starvation where there was no influent in the feed. The results of the integrated system with regard to removal efficiency and kinetics are comparable to published results with continuous feed studies at the same loading rates. The removal efficiency for benzene had a minimum of 85% while for n-hexane ranged from 50% to 77% according to the loading rate. The control unit showed very erratic performance highlighting the benefit of the utilization of the cyclic adsorption/desorption beds. The biofilter was more adaptable to concentration changes in benzene than n-hexane.  相似文献   
133.
Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high.To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study.In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively.Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative.A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations (56.8 μg L−1) in the influent (PEC = 79.8 μg L−1), but effluent concentration was much lower (0.76 μg L−1) whereas Guanylurea was detected in a low influent and high effluent concentration (1.86 μg L−1). These data support the experimental findings in the OECD tests and analytical results of other studies, that Metformin under aerobic conditions can bacterially be degraded to the stable dead-end transformation product Guanylurea.  相似文献   
134.
Emerging water contaminants derived from unleaded gasoline such as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), are in need of effective bioremediation technologies for restoring water resources. In order to design the conditions of a future groundwater bioremediating biofilter, this work assesses the potential use of Acinetobacter calcoaceticus M10, Rhodococcus ruber E10 and Gordonia amicalis T3 for the removal of MTBE, ETBE and TAME in consortia or as individual strains. Biofilm formation on an inert polyethylene support material was assessed with scanning electron microscopy, and consortia were also analysed with fluorescent in situ hybridisation to examine the relation between the strains. A. calcoaceticus M10 was the best coloniser, followed by G. amicalis T3, however, biofilm formation of pair consortia favoured consortium M10-E10 both in formation and activity. However, degradation batch studies determined that neither consortium exhibited higher degradation than individual strain degradation. The physiological state of the three strains was also determined through flow cytometry using propidium iodide and 3′-dihexylocarbocyanine iodide thus gathering information on their viability and activity with the three oxygenates since previous microbial counts revealed slow growth. Strain E10 was observed to have the highest physiological activity in the presence of MTBE, and strain M10 activity with TAME was only maintained for 24 h, thus we believe that biotransformation of MTBE occurs within the active periods established by the cytometry analyses. Viable cell counts and oxygenate removal were determined in the presence of the metabolites tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA), resulting in TBA biotransformation by M10 and E10, and TAA by M10. Our results show that A. calcoaceticus M10 and the consortium M10-E10 could be adequate inocula in MTBE and TAME bioremediating technologies.  相似文献   
135.
1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44 × 109 kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As3+, 840 ppm Hg2+, and 420 ppm Pb2+ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd2+, 840 ppm Hg2+ and 420 ppm of Pb2+ and less than 75 ppm As3+ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k1) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg2+. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients.  相似文献   
136.
The effect of cable oil concentration, nutrient amendment and bioaugmentation on cable oil component biodegradation in a pristine agricultural soil was investigated. Biodegradation potential was evaluated over 21 d by measuring cumulative CO2 respiration on a Micro-Oxymax respirometer and 14C-phenyldodecane mineralisation using a 14C-respirometric assay. Cable oil concentration had a significant effect upon oil biodegradation. Microbial respiratory activity increased with increasing cable oil concentration, whereas 14C-phenydodecane mineralisation decreased. Bioaugmentation achieved the best cable oil biodegradation performance, resulting in increases in cumulative CO2 respiration, and maximum rates and extents of 14C-phenyldodecane mineralisation. Generally, nutrient amendment also enhanced cable oil biodegradation, but not to the extent that degrader amendment did. Cable oil biodegradation was a function of (i) cable oil concentration and (ii) catabolic ability of microbial populations. Bioaugmentation may enhance cable oil biodegradation, and is dependent upon composition, cell number and application of catabolic inocula to soil.  相似文献   
137.
Gao P  Ding Y  Li H  Xagoraraki I 《Chemosphere》2012,88(1):17-24
Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals.  相似文献   
138.
Wang NX  Tang Q  Ai GM  Wang YN  Wang BJ  Zhao ZP  Liu SJ 《Chemosphere》2012,86(11):1098-1105
Tribenuron methyl (TBM) is a member of the sulfonylurea herbicide family and is widely used in weed control. Due to its phytotoxicity to rotating-crops, concerns on TBM-pollution to soil have been raised. In this study, experimental results indicated that microbial activity played a key role in TBM removal from polluted soil. Twenty-six bacterial strains were isolated and their degradation of TBM was evaluated. Serratia sp. strain BW30 was selected and subjected to further investigation on its degradative mechanism. TBM degradation by strain BW30 was dependent on glucose that was converted into lactic or oxalic acids. HPLC-MS analysis revealed two end-products from TBM degradation, and they were identical to the products from TBM acidohydrolysis. Based on this observation, it is proposed that microbe-mediated acidohydrolysis of TBM was involved in TBM degradation in soil, and possible application of this observation in bioremediation of TBM-polluted soil is discussed.  相似文献   
139.
Microbial degradation of benzene under anaerobic conditions plays an important role in remediation of contaminated sites but the microorganisms and metabolic pathways involved remain poorly understood. In this study, we evaluated degradation of benzene by a methanogenic enrichment culture obtained from non-contaminated lotus field soil, alone and in the presence of several putative metabolic intermediates, that is, toluene, benzoate and phenol. Using stable isotope (13C) labeled substrate, benzene was shown to be degraded almost completely to equimolar concentrations of methane and carbon dioxide, without detectable accumulation of extracellular metabolites. Concurrently, toluene, benzoate and phenol were also effectively mineralized, but probably by microorganisms other than the benzene degraders. The latter included Hasda-A, which is putative benzene-degrading deltaproteobacterium present in the culture. While toluene and benzoate did not affect benzene degradation, phenol had a moderate inhibitory effect although it was not a major metabolic intermediate of benzene in our culture. Finally, 4-hydroxycoumarin was detected as a compound formed from phenol but further experiments are required to elucidate its relationship to degradation of phenol.  相似文献   
140.
The biodegradation conducted by microorganisms on herbicide glyphosate (N-phosphonomethylglycine) was investigated. Five strains of filamentous fungi belonging to the Fusarium genre were grown on Czapeck medium without phosphorous and supplemented with the addition of glyphosate. The assays were conducted to determine the ability of use as a phosphorous source, the inhibition caused by presence of herbicide, and the biodegradation in shaker and bioreactor by Fusarium strains. It was observed that the herbicide did not show any negative effect on microrganisms by quantity of the biomass. Among the strains tested, no inhibition was noted by the addition of glyphosate even at a high concentration. All strains studied were able to biodegrade it and use the herbicide as a phosphorous source. The formation of consortium was not better than the strains tested in pure culture. The biodegradation in the bioreactor was better than in the shaker. However, there wasn't any influence on biodegradation rate by changing the amount of oxygen in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号