首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   0篇
  国内免费   29篇
安全科学   3篇
废物处理   56篇
环保管理   15篇
综合类   80篇
基础理论   27篇
污染及防治   158篇
评价与监测   1篇
社会与环境   4篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   30篇
  2012年   15篇
  2011年   34篇
  2010年   7篇
  2009年   14篇
  2008年   23篇
  2007年   20篇
  2006年   27篇
  2005年   13篇
  2004年   12篇
  2003年   18篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   16篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有344条查询结果,搜索用时 46 毫秒
21.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   
22.

The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG1024 (a frameshift-detecting strain) and YG1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG1024 and YG1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG1029 but did not change significantly for YG1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG1024 and YG1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   
23.
Quaternized, crosslinked sugarcane bagasse can adsorb anionic dyes from textile wastewater. Disposal of dye-saturated adsorbent by composting or land application would require that modifications made to the bagasse do not interfere with its decomposition. The impact of quaternization and crosslinking on bagasse biodegradability was examined. Bagasse in varying states of modification was mixed with soil and monitored for carbon dioxide evolution for four weeks at 27°C. After subtracting the amount of carbon evolved from control soil samples, the net carbon evolved from the bagasse samples was determined and used as a measure of their extent of biodegradation. Biodegradability decreased in the order: bagasse (approx. 60% degraded after four weeks) > quaternized bagasse > quaternized, epichlorohydrin-crosslinked bagasse > quaternized, methylene-bis-acrylamide-crosslinked bagasse > epichlorohydrin-crosslinked bagasse (less than 5% degraded). Crosslinking severely impacted biodegration, probably by preventing the penetration of (hemi)cellulytic and lignolytic enzymes into the interior of the modified bagasse particles. It is concluded that the biodegradability of quaternized, crosslinked bagasse is too low for composting or land application.  相似文献   
24.
Endocrine disrupting chemical(EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol(E2), 17α-ethinylestradiol(EE2) and bisphenol A(BPA). The three recharge columns were operated under the conditions of continual sterilization recharge(CSR), continual recharge(CR), and wetting and drying alternative recharge(WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR CR CSR system and E2 EE2 BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m-1 for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature.In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.  相似文献   
25.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   
26.
氯菊酯的酶促降解   总被引:4,自引:0,他引:4  
从降解氯菊酯的分离株YF11提取降解酶并测定了对氯菊酯的降解特性,降解酶在32.5℃,pH9.0时对氯菊酯显示最大的降解活性,其每毫克蛋白质最大降解速率为20.8nmol/min,米氏常数为5.2nmol/mL。  相似文献   
27.
Most of the standardized biodegradation tests used to assess the ultimate biodegradation of environmentally degradable polymers are based solely on the determination of net evolved carbon dioxide. However, under aerobic conditions, it has to be considered that heterotrophic microbial consortia metabolize carbon substrates both to carbon dioxide and in the production of new cell biomass. It is generally accepted that in the relatively short term, 50% of the carbon content of most organic substrates is converted to CO2, with the remaining carbon being assimilated as biomass or incorporated into humus. The latter is particularly important when the metabolism of the organic matter occurs in a soil environment. A straightforward relationship between the free-energy content of a carbon substrate (expressed as the standard free-energy of combustion) and its propensity for conversion to new microbial biomass rather than mineralization to CO2 has been established. This can potentially lead to underestimation of biodegradation levels of test compounds, especially when they consist of carbon in a fairly low formal oxidation state and relatively high free-energy content. In the present work, the metabolism of different kind of carbon substrates, especially in soil, is reviewed and compared with our own experimental results from respirometric tests. The results show that conversion of highly oxidized materials, such as the commonly used reference materials, cellulose or starch, to CO2 may be significantly overestimated. The addition of glucosidic material to soil leads to greatly increased respiration and is accompanied by a very low conversion to biomass or humic substances. In contrast, relatively less oxidized substrates metabolize more slowly to give both CO2 and biomass to an extent which may be significantly underestimated if glucosidic materials are used as the reference. The need for an overall carbon balance taking into account both the carbon immobilized as biomass and that volatized as CO2 must be considered in standard respirometric procedures for assessing the biodegradability of slowly degrading macromolecules.  相似文献   
28.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   
29.
In recent years, compound specific isotope analyses (CSIA) have developed into one of the most powerful tools for the quantification of in situ biodegradation of organic contaminants. In this approach, the calculation of the extent of biodegradation of organic contaminants in aquifers is usually based on the Rayleigh equation, and thus neglects physical transport processes such as dispersion that contribute to contaminant dilution in aquifers. Here we combine compound specific isotope analyses with a conservative transport model to study the attenuation of aromatic hydrocarbons at a former gasworks site. The conservative transport model was first used to simulate concentration reductions caused by dilution at wells downgradient of a BTEX source. In a second step, the diluted concentrations, together with the available stable carbon isotope ratios and carbon fractionation factors for benzene, toluene and o-xylene were applied in the Rayleigh equation to quantify the degree of biodegradation at each of those wells. At the investigated site, where other attenuation processes such as sorption and volatilisation were proven to be negligible, the combined approach is recommended for benzene, which represents a compound for which the effect of biodegradation is comparable to or less than the effect of dilution. As demonstrated for toluene and o-xylene, the application of the Rayleigh equation alone is sufficient if dilution can be proved to be insignificant in comparison to biodegradation. The analysis also suggests that the source width and the position of the observation wells relative to the plume center line are significantly related to the degree of dilution.  相似文献   
30.
采用普通好氧活性污泥驯化培养启动亚硝化反应器,探索了在实验室条件下,亚硝化反应的最适宜条件。结果表明.在温度(T)为35℃,pH值为7.5左右,初始污泥浓度0.7g/L时,控制较高的初始进水氨氨浓度和较低的DO浓度,有利于亚硝化反应的启动:驯化后,反应器内氨氮处理效果良好,即使进水氨氮浓度高达2400mg/L时,氨氮去除率也能达到95%以上;在实验中,亚硝化的最适宜条件为,温度:29~35℃.pH值:7.0~8.0。同时.实验结果表明,在一定范围内,溶解氧浓度越高,亚硝化反应速率越快:C/N比过高会严重抑制亚硝化反应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号