首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2826篇
  免费   625篇
  国内免费   470篇
安全科学   1351篇
废物处理   66篇
环保管理   505篇
综合类   1319篇
基础理论   157篇
污染及防治   184篇
评价与监测   69篇
社会与环境   91篇
灾害及防治   179篇
  2024年   19篇
  2023年   79篇
  2022年   139篇
  2021年   184篇
  2020年   174篇
  2019年   174篇
  2018年   133篇
  2017年   154篇
  2016年   214篇
  2015年   216篇
  2014年   153篇
  2013年   169篇
  2012年   264篇
  2011年   220篇
  2010年   171篇
  2009年   159篇
  2008年   122篇
  2007年   195篇
  2006年   164篇
  2005年   108篇
  2004年   81篇
  2003年   80篇
  2002年   77篇
  2001年   68篇
  2000年   55篇
  1999年   34篇
  1998年   38篇
  1997年   26篇
  1996年   25篇
  1995年   27篇
  1994年   31篇
  1993年   19篇
  1992年   13篇
  1991年   9篇
  1990年   4篇
  1989年   8篇
  1988年   13篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   11篇
  1978年   6篇
  1973年   4篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
排序方式: 共有3921条查询结果,搜索用时 515 毫秒
241.
Substantial conflict exists over water management and allocation in the Platte River Basin of Nebraska. An interdisciplinary computer simulation model, representing the water quantity, water quality, environmental, and economic dimensions of the conflict, was developed in order to analyze the tradeoffs among allocation scenarios. Most importantly, decisionmakers and interest groups were involved in model development. Simulation results for a base case and two scenarios are presented. One scenario favors protection of instream flow for wildlife; the other favors water diversions for agriculture. Impacts of the instream flow scenario, as measured by the amount of land irrigated, groundwater levels, the amount of wildlife habitat for cranes and catfish, and net agricultural benefits did not differ greatly from those of the base case. However, impacts of the diversion scenario were substantial. On the negative side, instream flows and wildlife habitat declined an average of 39 percent; while, on the positive side, groundwater levels and net agricultural benefits each increased 6 percent. The modeling process was successful insofar as it promoted an understanding among the highly diverse interest groups of the systems nature of the Basin. One agreement on a water diversion schedule among three of the parties has been reached, partly as a result of this process. More comprehensive compromises have not yet been forged. Our experience, however, indicates that modeling success at the policymaking level depends more on the extent to which the policymakers understand the model than it does on model sophistication.  相似文献   
242.
ABSTRACT: Mathematical optimization techniques are used to study the operation and design of a single, multi-purpose reservoir system. Optimal monthly release policies are derived for Hoover Reservoir, located in Central Ohio, using chance-constrained linear programming and dynamic programming-regression methodologies. Important characteristics of the former approach are derived, discussed, and graphically illustrated using Hoover Reservoir as a case example. Simulation procedures are used to examine and compare the overall performance of the optimal monthly reservoir release policies derived under the two approaches. Results indicate that, for the mean detention time and the corresponding safe yield target water supply release under existing design of Hoover Reservoir, the dynamic programming policies produce lower average annual losses (as defined by a two-sided quadratic loss function) while achieving at least as high reliability levels when compared to policies derived under the chance-constrained linear programming method. In making this comparison, the reservoir release policies, although not identical, are assumed to be linear. This restricted form of the release policy is necessary to make the chance-constrained programming method mathematically tractable.  相似文献   
243.
ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers, is responsible for operating two multipurpose reservoirs in the 7384 square mile (19198 square kilometer) Monongahela Basin. A third reservoir, presently under construction, will soon be operating. The real-time forecasting of runoff for operational purposes requires simulation of snow accumulation and snowmelt throughout the Basin during the winter season. This article describes capabilities of SNOSIM, a model being developed for performing such simulation. The application of this model as part of a comprehensive system of water control software, and some initial simulation results are presented.  相似文献   
244.
ABSTRACT: The use of reservoirs and land treatments to manage streamflow for the maintenance or enhancement of instream flow values is a valid concept. Historically, large reservoirs have been used for flood control and water-supply regulation. Smaller structures have enjoyed widespread use for soil and water conservation in headwater areas. Where reservoir releases can be controlled, it is technically feasible to regulate flows for the enhancement of instream values. However, institutional and political obstacles may preclude the operation of some reservoirs for this purpose. Retention and detention structures and land treatments, implemented for soil and water conservation purposes, have often had favorable effects on the streamflow hydrograph. Decreases in peak flows and increases in low flows have been documented. Design concepts for runoff-control structures are discussed in relation to instream flow management objectives. Hydro-logic simulation is offered as a potential tool for project design and feasibility analysis.  相似文献   
245.
ABSTRACT: A large-scale simulation/optimization model provides schedules for operation of water and power for the California State Water Project (SWP). The SWP consists of a series of reservoirs linked by rivers, pumping plants, canals, tunnels, and generating plants and is operated by the California Department of Water Resources. The Department provides water to municipal and agricultural users, and manages its electrical loads and resources. The model, therefore, performs hydraulic and electrical computations leading to optimal operation of the entire system. It consists of hydraulic network programming components to meet the storage objectives at all the reservoirs, a linear programming component to determine the schedules at pumping and generating plants, an electrical network programming component to balance electrical loads and resources, and a number of other simulation components. It operates on yearly, weekly, and daily bases. It is primarily used for real-time operation of the SWP and can provide hourly detail schedules which are implemented by the SWP staff via a computerized system.  相似文献   
246.
ABSTRACT: Water level fluctuations of the Great Lakes often have created regional controversies among the states and Canadian provinces that share this vast resource. Even though the 100-year range of their water levels is only four to five feet, episodes of high and low Great Lakes water levels have been a recurring problem throughout the twentieth century. The possibility of increased diversion and consumptive use has exacerbated the existing conflicts over how to manage this water resource. A research project evaluated the effects of interbasin diversion on the Great Lakes system and on the industries that depend on the maintenance of historical water levels, namely hydropower and commercial navigation. The simulation approach employed in this research and some of the important findings are presented. The approach is similar to that used in recent government studies of Great Lakes water level regulation. Several significant modifications were made specifically addressing the diversion issue. Aggregate annual impacts to hydropower and shipping resulting from a diversion of 10,000 cubic feet per second were found to vary from 60 to 100 million dollars. Increases in impacts as a function of diversion rate are nonlinear for the navigation industry.  相似文献   
247.
ABSTRACT: We evaluated the effects of institutional responses developed for coping with a severe sustained drought (SSD) in the Colorado River Basin on selected system variables using a SSD inflow hydrology derived from the drought which occurred in the Colorado River basin from 1579–1616. Institutional responses considered are reverse equalization, salinity reduction, minimum flow requirements, and temporary suspension of the delivery obligation of the Colorado River Compact. Selected system variables (reservoir contents, streamflows, consumptive uses, salinity, and power generation) from scenarios incorporating the drought-coping responses were compared to those from Baseline conditions using the current operating criteria. The coping responses successfully mitigated some impacts of the SSD on consumptive uses in the Upper Basin with only slight impacts on consumptive uses in the Lower Basin, and successfully maintained specified minimum streamflows throughout the drought with no apparent effect on consumptive uses. The impacts of the coping responses on other system variables were not as clear cut. We also assessed the effects of the drought-coping responses to normal and wet hydrologic conditions to determine if they were overly conservative. The results show that the rules would have inconsequential effects on the system during normal and wet years.  相似文献   
248.
本研究运用区域方法模拟了建筑物火灾的发展过程,采用理论分析和经验公式相结合的方法,开发了火灾工程系统软件,分析求解了防火工程中的参数,该模型可为建筑物防火工程设计提供咨询、评估。  相似文献   
249.
Restorative environments are environments that can help restore depleted attention resources or reduce emotional and psychophysiological stress. These effects have been demonstrated not only in real environments, but also in mediated (projected, broadcasted, etc.) environments. However, the importance of simulation qualities to restoration outcomes has not been systematically studied. The present experiment investigates the importance of immersion in a mediated environment in relation to restoration. Is a projected natural environment more restorative when one is more immersed in it, and hence feels more present in it? The hypothesis was that a more immersive projection would show stronger stress-reducing effects of a mediated restorative environment. After performing a stress-inducing task, participants watched a nature film on either a high or low immersive screen. Physiological measurements (heart period and skin conductance level) were taken throughout the experiment. In addition, we measured self-reported affect and presence using the ITC-Sense of Presence Questionnaire. Significant effects of the screen size manipulation appeared on physiological measures, but not on self-reported affect. The data showed an interaction between screen size and restorative phase on heart period and skin conductance level, indicating stronger restoration for the immersive screen condition over time. We therefore conclude that immersion enhances restorative potential of a mediated natural environment. Self-reported affect did correlate significantly with experienced presence, illustrating the relevance of this experiential counterpart of immersion, although a mediating effect of presence has not yet been established.  相似文献   
250.
This study examines sources of fecal coliform in Segment 2302 of the Rio Grande, located south of the International Falcon Reservoir in southern Texas. The watershed is unique because the contributing drainage areas lie in Texas and Mexico. Additionally, the watershed is mostly rural, with populated communities known as “colonias.” The colonias lack sewered systems and discharge sanitary water directly to the ground surface, thus posing an increased health hazard from coliform bacteria. Monitoring data confirm that Segment 2302 is not safe for contact recreation due to elevated fecal coliform levels. The goal of the study was to simulate the observed exceedences in Segment 2302 and evaluate potential strategies for their elimination. Fecal coliform contributions from ranching and colonia discharges were modeled using the Hydrologic Simulation Program‐Fortran (HSPF). Model results indicated that the regulatory 30‐day geometric mean fecal coliform concentration of 200 colony forming units (cfu) per 100 milliliters is exceeded approximately three times per year for a total of 30 days. Ongoing initiatives to improve wastewater facilities will reduce this to approximately once per year for 14 days. Best management practices will be necessary to reduce cattle access to streams and eliminate all exceedences. The developed model was limited by the relatively sparse flow and fecal coliform data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号