首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2826篇
  免费   625篇
  国内免费   470篇
安全科学   1351篇
废物处理   66篇
环保管理   505篇
综合类   1319篇
基础理论   157篇
污染及防治   184篇
评价与监测   69篇
社会与环境   91篇
灾害及防治   179篇
  2024年   19篇
  2023年   79篇
  2022年   139篇
  2021年   184篇
  2020年   174篇
  2019年   174篇
  2018年   133篇
  2017年   154篇
  2016年   214篇
  2015年   216篇
  2014年   153篇
  2013年   169篇
  2012年   264篇
  2011年   220篇
  2010年   171篇
  2009年   159篇
  2008年   122篇
  2007年   195篇
  2006年   164篇
  2005年   108篇
  2004年   81篇
  2003年   80篇
  2002年   77篇
  2001年   68篇
  2000年   55篇
  1999年   34篇
  1998年   38篇
  1997年   26篇
  1996年   25篇
  1995年   27篇
  1994年   31篇
  1993年   19篇
  1992年   13篇
  1991年   9篇
  1990年   4篇
  1989年   8篇
  1988年   13篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   11篇
  1978年   6篇
  1973年   4篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
排序方式: 共有3921条查询结果,搜索用时 906 毫秒
281.
基于流体力学中空气射流理论,建立气幕旋风排风罩流场的三维数学模型。影响气幕旋风排风罩效果的因素很多,主要包括:射流气动参数、吹吸气动参数以及流动空间的边界条件和装置结构等。针对不同送风速度、不同送风角度下两种情况进行分析,并利用FLUENT计算动力学软件对这两种情况下气幕旋风排风罩的流场进行了数值模拟,经过比较确定出最佳效果时的参数,并利用示综烟雾进行了实验。结果表明:所建立的气幕旋风排风罩流场的数学模型完全正确,所确定的最佳效果时的参数和实际情况基本一致,可用于工程实际。  相似文献   
282.
在考虑人为恐怖袭击行为情况下,采用地铁轨道区模型实体火灾试验研究了地铁轨道区的火灾场景。得出了模拟地铁轨道区在火灾中的热释放速率,烟气浓度,温度,烟密度的变化规律。通电模拟短路以致引燃方式着火的最大热释放速率为9.66kW。浇洒煤油方式点火,轨道区最大热释放速率达到了204kW。随着电缆的点燃,燃烧进行的较为缓慢,烟气上升至隧道顶,沿着顶部向开口外扩散。C02的浓度变化较为缓慢。至10’41″达到c02释放峰值5027.7ppm;至10’41″时C0浓度达到最大354.0ppm。在轨道区问燃烧过程中,高温烟气始终沿着隧道顶部扩散,低于1.5m的空间是相对安全的;高于1.7m的空间是相对危险区域。火灾中烟气是首先弥漫整个房顶,然后再往下漫延的。  相似文献   
283.
在现行的性能化防火设计中,通常将火灾发展与人员疏散两个过程分开考虑,从而忽略了火场环境对人员疏散过程的实时作用。该方法与实际情况有很大差异。笔者借助火灾模拟程序CFAST和人员疏散仿真软件buildingEXODUS,以某地铁车站为例,进行了火场环境实时作用下的人群疏散仿真研究。结果表明,火场环境会降低人群的判断和活动能力,延长疏散时间并产生其他的不利后果。因此,在防火设计中考虑火场环境对人群疏散的实时影响是十分必要的。  相似文献   
284.
Abstract: The U.S. Federal Emergency Management Agency (FEMA) flood maps depict the 100‐year recurrence interval floodplain boundary as a single line. However, because of natural variability and model uncertainty, no floodplain extents can be accurately defined by a single line. This article presents a new approach to floodplain mapping that takes advantage of accepted methodologies in hydrologic and hydraulic analysis while including the effects of uncertainty. In this approach, the extents of computed floodplain boundaries are defined as a continuous map of flood probabilities, rather than as a single line. Engineers and planners can use these flood probability maps for viewing the uncertainty of a floodplain boundary at any recurrence interval. Such a flood probability map is a useful tool for visualizing the uncertainty of a floodplain boundary and represents greater honesty in engineering technologies that are used for flood mapping. While institutional barriers may prevent adoption of such definitions for use in graduated flood insurance rates (as most other insurance industries use to account for relative risks), the methods open the door technically to such a reality.  相似文献   
285.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   
286.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   
287.
ABSTRACT: The use of continuous hydrologic-hydraulic-water quality models is inhibited by their large computer run costs relative to cost incurred with discrete event models. The fixed recurrence interval transfer (FRIT) technique is a means of achieving substantial reductions in computer costs associated with continuous models while retaining their technical advantages. The FRIT technique is applicable where it is reasonable to assume that the recurrence interval of the response of a watershed to a causative meteorologic event is the same for both “before” and “after” conditions. Example applications of the FRIT technique to the hydrologic-hydraulic modeling of floodwater storage, land use changes, and channel modifications are presented to demonstrate the procedure, to suggest the expected accuracy, and to illustrate how computer run costs might be reduced by 99% or more. The FRIT technique is intended for preliminary assessment of the impact of alternative land use conditions and structural water control measures.  相似文献   
288.
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   
289.
ABSTRACT: Simulation of a large stream-aquifer system in Nebraska has been accomplished for the period from 1975 to 2020 to determine effects of controls on ground water pumpage. Three scenarios tested consisted of average annual withdrawals of 15.2 ac-in/ac (FUTURE 1), 14.8 ac-in/ac (FUTURE 2), and 9.8 ac-in/ac (FUTURE 3). The highest quantity represents the historical tendency; while the 14.8 in. figure represents a slight reduction and also represents an equalization of irrigation application efficiencies throughout the area. The lowest figure represents a substantial increase in application efficiency. Comparisons between simulated ground water elevations indicate maximum savings of FUTURE 2 over FUTURE 1 of less than 8 ft. FUTURE 3 ft. FUTURE 3 levels are projected to be a maximum of approximately 13 ft. higher than FUTURE 1's. The relatively small savings from reductions in pumpage result primarily from recirculation effects. Differences between ground water contributions to stream flow are small for all scenarios. These contributions decrease with time and increasing pumpage amounts. Base flow rates at the end of the simulation are approximately 25 percent of those at the beginning.  相似文献   
290.
ABSTRACT: Section 208 of the Federal Water Pollution Control Act Amendments of 1972 has provided the Southwestern Illinois Metropolitan and Regional Planning Commission (SIMAPC) with a unique opportunity for comprehensive planning of the region's water quality. SIMAPC initiated the 208 study by researching available technology for the analysis of point and nonpoint sources of pollution and establishing criteria by which to judge the various technniques. This led to SIMAPC'S choice of continuous simulation of stream and reservoir water quality as the most appropriate analytical tool for their needs. A continuous simulation model was calibrated and verified on three basins in the SIMPAC region. It was then used to produce load source analysis, pollution event frequency analysis, and pollution event duration analysis for ten pollutants under existing stream conditions and then under alternative future conditions. These results enabled the weighting of pollutant sources, analysis of the effectiveness of control measures, and quantitative analysis of the marginal benefit of each alternative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号