首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1476篇
  免费   157篇
  国内免费   365篇
安全科学   3篇
废物处理   8篇
环保管理   683篇
综合类   898篇
基础理论   158篇
污染及防治   36篇
评价与监测   109篇
社会与环境   87篇
灾害及防治   16篇
  2024年   7篇
  2023年   17篇
  2022年   29篇
  2021年   47篇
  2020年   36篇
  2019年   55篇
  2018年   36篇
  2017年   50篇
  2016年   57篇
  2015年   79篇
  2014年   55篇
  2013年   116篇
  2012年   126篇
  2011年   116篇
  2010年   89篇
  2009年   99篇
  2008年   73篇
  2007年   96篇
  2006年   118篇
  2005年   77篇
  2004年   79篇
  2003年   82篇
  2002年   73篇
  2001年   47篇
  2000年   48篇
  1999年   42篇
  1998年   35篇
  1997年   29篇
  1996年   27篇
  1995年   18篇
  1994年   11篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   11篇
  1989年   7篇
  1988年   10篇
  1987年   9篇
  1986年   3篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1977年   4篇
  1975年   4篇
  1974年   7篇
  1971年   4篇
  1970年   3篇
排序方式: 共有1998条查询结果,搜索用时 31 毫秒
51.
ABSTRACT: In 1998 and 1999, third‐order watersheds in high mature forest (HMF) and low mature forest (LMF) classes were selected along gradients of watershed storage within each of two hydrogeomorphic regions in the Lake Superior Basin to evaluate threshold effects of storage on hydrologic regimes and watershed exports. Differences were detected between regions (North and South Shore) for particulates, nutrients, and pH, with all but silica values higher for South Shore streams (p < 0.05). Mature forest effects were detected for turbidity, nutrients, color, and alkalinity, with higher values in the LMF watersheds, that is, watersheds with less that 50 percent mature forest cover. Dissolved N, ammonium, N:P, organic carbon, and color increased, while suspended solids, turbidity, and dissolved P decreased as a function of storage. Few two‐way interactions were detected between region and mature forest or watershed storage, thus threshold based classification schemes could be used to extrapolate effects across regions. Both regional differences in water quality and those associated with watershed attributes were more common for third‐order streams in the western Lake Superior drainage basin as compared with second‐order streams examined in an earlier study. Use of ecoregions alone as a basis for setting regional water quality criteria would have led to misinterpretation of reference condition and assessment of impacts in the Northern Lakes and Forest Ecoregion.  相似文献   
52.
A study of a watershed planning process in the Cache River Watershed in southern Illinois revealed that class divisions, based on property ownership, underlay key conflicts over land use and decision-making relevant to resource use. A class analysis of the region indicates that the planning process served to endorse and solidify the locally-dominant theory that landownership confers the right to govern. This obscured the class differences between large full-time farmers and small-holders whose livelihood depends on non-farm labor. These two groups generally opposed one another regarding wetland drainage. Their common identity as “property owner” consolidated the power wielded locally by large farmers. It also provided an instrument – the planning document – for state and federal government agencies to enhance their power and to bring resources to the region. The planning process simultaneously ameliorated conflicts between government agencies and the large farmers, while enhancing the agencies’ capacity to reclaim wetlands. In this contradictory manner, the plan promoted the environmental aims of many small-holders, and simultaneously disempowered them as actors in the region’s political economy. An erratum to this article is available at .  相似文献   
53.
As part of the program monitoring the ecosystem health of Moreton Bay, Queensland, Australia, we developed a means for assessing ecosystem health that allows quantitative evaluation and spatial representations of the assessments. The management objectives for achieving ecosystem health were grouped into ecosystem objectives, water quality objectives, and human health objectives. For the first two groups, aspects of the ecosystem (e.g., trophic status) were identified, and an indicator was chosen for each aspect. Reference values for each indicator were derived from management objectives and compared with the mapped survey values. Subregions for which the indicator statistic was equal to or better than the assigned reference value are referred to as “compliant zones.” High-resolution surface maps were created from spatial predictions on a fine hexagonal grid for each of the indicators. Eight reporting subregions were established based on the depth and predicted residence times of the water. Within each reporting subregion, the proportion that was compliant was calculated. These results then were averaged to create an integrated ecosystem health index. The ratings by a team of ecosystem experts and the calculated ecosystem health indices had good correspondence, providing assurance that the approach was internally consistent, and that the management objectives covered the relevant biologic issues for the region. This method of calculating and mapping ecosystem health, relating it directly to management objectives, may have widespread applicability for ecosystem assessment.  相似文献   
54.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
55.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
56.
Despite long-standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high-resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows: no buffer (32.5%), narrow (19.3%), forested (26.7%), shrub (7.2%), and intermediate (7.0%). Relative to 1998, the greatest decrease occurred in the no buffer class (−17.7%, 46 km) and the largest increases occurred in the shrub (+72.5%, 20 km) and narrow (12.6%, 14 km) classes. Forested buffer marginally increased. Semi-structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non-adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.  相似文献   
57.
Teague, Aarin, Philip B. Bedient, and Birnur Guven, 2011. Targeted Application of Seasonal Load Duration Curves Using Multivariate Analysis in Two Watersheds Flowing Into Lake Houston. Journal of the American Water Resources Association (JAWRA) 47(3):620‐634. DOI: 10.1111/j.1752‐1688.2011.00529.x Abstract: Water quality is a problem in Lake Houston, the primary source of drinking water for the City of Houston, Texas, due to pollutant loads coming from the influent watersheds, including Spring Creek and Cypress Creek. Statistical analysis of the historic water quality data was developed to understand the source characterization and seasonality of the watershed. Multivariate analysis including principal component, cluster, and discriminant analysis provided a custom seasonal assessment of the watersheds so that loading curves may be targeted for season specific pollutant source characterization. The load duration curves have been analyzed using data collected by the U.S. Geologic Survey with corresponding City of Houston water quality data at the sites to characterize the behavior of the pollutant sources and watersheds. Custom seasons were determined for Spring Creek and Cypress Creek watersheds and pollutant source characterization compared between the seasons and watersheds.  相似文献   
58.
桑沟湾表层沉积物性质及对磷的吸附特征   总被引:3,自引:2,他引:1  
通过研究桑沟湾表层沉积物对磷的吸附动力学曲线和吸附等温线,并结合沉积物的表面电荷性质及磷的形态分析,考察了沉积物对磷的吸附性能和吸附机制.结果表明,桑沟湾表层沉积物对磷的吸附过程包括快吸附过程和慢吸附过程,可用快慢二段一级动力学方程描述,等温线符合Langmuir交叉式模型.夏季沉积物样品的最大吸附量高于春季样品,粒级较小的沉积物吸附能力较强.沉积物样品对磷的最大吸附量Qm在0.047 1~0.123 0 mg·g-1之间,吸附/解吸平衡磷浓度(EPC0)范围在0.059 6~0.192 7 mg·L-1,沉积物充当"磷源"的作用.不同站位表层沉积物中无机磷(IP)是磷在沉积物中的主要赋存形态,吸附后的沉积物样品中弱吸附态磷(Ex-P)、铁结合态磷(Fe-P)明显增加.吸附过程包括物理吸附和化学吸附,以物理吸附为主.  相似文献   
59.
潘晓雪  马迎群  秦延文  邹华 《环境科学》2015,36(8):2800-2808
为了解"引江济太"调水过程中长江、望虞河对贡湖营养盐输入特征,于2013年8月和2013年12月引水期间对20个采样点各形态N、P质量浓度的沿程和时间变化以及百分含量占比进行研究.结果表明,两个不同的引水期,长江-望虞河-贡湖段水体各形态N、P沿程和时间变化均表现不一:长江引水经望虞河入贡湖后,水体NO-2-N、NO-3-N、NH+4-N和TN质量浓度均较长江和望虞河段有不同程度的降低,而贡湖段DON质量浓度显著高于长江和望虞河段,但长江-望虞河段水体各形态N中NO-3-N质量浓度最高.长江和望虞河TP质量浓度总体表现平稳,而各形态P质量浓度在两个引水时期内有所变化.从时间变化来看,2013年8月水体的DON和TP质量浓度总体上高于12月;而NO-3-N和DOP质量浓度总体上低于12月.总体来说,两个引水时期内,NO-3-N和TPP是望虞河经长江引水的主要N、P形态;而贡湖经望虞河水体输入的N、P主要形态分别为NO-3-N、PO3-4-P和TPP.  相似文献   
60.
陈成龙  高明  木志坚  倪九派  祁乐 《环境科学》2017,38(8):3254-3263
利用长期田间监测数据,分析了三峡库区典型农业小流域不同土地利用类型土壤、浅层地下水氮磷含量分异特征,剖析了坡面土壤氮磷含量与浅层地下水、坡面地表径流氮磷浓度的相互关系.结果表明梯田的土壤TN平均含量显著(P0.05)高于坡耕地,水田梯田平均含量1.49 g·kg~(-1)最高;旱地坡耕地和桑树套种坡耕地土壤TP平均含量显著高于其它地类;旱地梯田土壤NO_3~--N平均含量最高,离散程度最大.坡面土地利用类型对浅层地下水TN、NO_3~--N浓度影响较大,但对TP浓度影响较小;流域浅层地下水TN浓度与NO_3~--N浓度呈极显著正相关,不同坡面浅层地下水NO_3~--N对TN平均贡献率在67.82%~78.51%之间;浅层地下水TN、NO_3~--N月平均浓度变化规律基本一致,春秋两季农作物施肥后均呈现明显上升趋势.坡面土壤TN平均含量与浅层地下水TN浓度呈显著指数关系,坡面土壤NO_3~--N平均含量与浅层地下水NO_3~--N浓度呈对数关系,但与坡面地表径流TN、NO_3~--N浓度无显著相关性;当坡面地表径流TP浓度0.1 mg·L~(-1)时,坡面土壤TP平均含量与其呈显著线性相关;坡面地表径流与浅层地下水TN、NO_3~--N浓度均呈显著幂函数关系,且NO_3~--N相关性更好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号