首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   6篇
  国内免费   14篇
安全科学   103篇
废物处理   8篇
环保管理   37篇
综合类   84篇
基础理论   59篇
污染及防治   24篇
评价与监测   46篇
社会与环境   2篇
灾害及防治   11篇
  2024年   1篇
  2023年   11篇
  2022年   2篇
  2021年   12篇
  2020年   17篇
  2019年   10篇
  2018年   7篇
  2017年   3篇
  2016年   13篇
  2015年   19篇
  2014年   27篇
  2013年   21篇
  2012年   17篇
  2011年   33篇
  2010年   8篇
  2009年   20篇
  2008年   14篇
  2007年   6篇
  2006年   19篇
  2005年   13篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   10篇
  2000年   4篇
  1999年   14篇
  1998年   10篇
  1997年   12篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
241.
建立顶空-气相色谱法测定水中苯系物不确定度的评定方法,分析测定过程中的主要影响因素,评定测定过程中引入不确定度的来源.通过分析和量化影响测定结果的不确定度分量,得出各分量对不确定度的相对贡献,对测定结果进行了表述.结果表明,顶空-气相色谱法测定水中苯系物七种组分的相对合成不确定度范围为6.09% ∽ 11.11%,苯乙烯和邻二甲苯的不确定度较大,不确定度的主要影响因素为标准溶液及曲线配制、方法加标回收和样品重复测量.  相似文献   
242.
根据2012年8月对广西防城港“红树林原位生态保育系统”示范基地8月1日、8月8日、8月15日3天24小时连续水质监测资料,讨论该系统叶绿素含量的周日变化情况与其他环境因子的关系,分析水质的变化情况。  相似文献   
243.
顶空气相色谱测定空气中甲醇和乙醇含量,方法简单、快速,无需使用有机试剂。本方法以蒸馏水吸收空气中甲醇和乙醇,顶空进样经DB-624毛细管柱分离,氢火焰离子化检测器检测,时间定性,峰面积定量,其甲醇加标回收率为96.7%~104.6%,乙醇加标回收率为94.7%~103.8%,当在采样体积为40L的条件下,甲醇和乙醇最低检出质量浓度均为0.11mg/m^3。实际操作证明,该法能满足工业废气和空气中的甲醇和乙醇的监测。  相似文献   
244.
采用静态顶空-气相色谱法测定固体废物中丙烯醛、丙烯腈和乙腈的含量。着重讨论了顶空平衡温度、平衡时间等因素对三种物质测定结果的影响,并优化了试验参数。在优化的实验条件下,丙烯醛、丙烯腈、乙腈及溶剂甲醇能完全分离,校准曲线线性范围可达1.00到100 mg/kg,方法检出限分别为0.044、0.034和0.035 mg/kg,实际样品加标回收率在90%~109%之间,相对标准偏差为3.3%~8.6%。  相似文献   
245.
Air pollution control policies in China have been experiencing profound changes, highlighting a strategic transformation from total pollutant emission control to air quality improvement, along with the shifting targets starting from acid rain and NOx emissions to PM2.5 pollution, and then the emerging O3 challenges. The marvelous achievements have been made with the dramatic decrease of SO2 emission and fundamental improvement of PM2.5 concentration. Despite these achievements, China has proposed Beautiful China target through 2035 and the goal of 2030 carbon peak and 2060 carbon neutrality, which impose stricter requirements on air quality and synergistic mitigation with Greenhouse Gas (GHG) emissions. Against this background, an integrated multi-objective and multi-benefit roadmap is required to provide decision support for China's long-term air quality improvement strategy. This paper systematically reviews the technical system for developing the air quality improvement roadmap, which was integrated from the research output of China's National Key R&D Program for Research on Atmospheric Pollution Factors and Control Technologies (hereafter Special NKP), covering mid- and long-term air quality target setting techniques, quantitative analysis techniques for emission reduction targets corresponding to air quality targets, and pathway optimization techniques for realizing reduction targets. The experience and lessons derived from the reviews have implications for the reformation of China's air quality improvement roadmap in facing challenges of synergistic mitigation of PM2.5 and O3, and the coupling with climate change mitigation.  相似文献   
246.
Integral to the urban ecosystem, greening trees provide many ecological benefits, but the active biogenic volatile organic compounds (BVOCs) they release contribute to the production of ozone and secondary organic aerosols, which harm ambient air quality. It is, therefore, necessary to understand the BVOC emission characteristics of dominant greening tree species and their relative contribution to secondary pollutants in various urban contexts. Consequently, this study utilized a dynamic enclosure system to collect BVOC samples of seven dominant greening tree species in urban Chengdu, Southwest China. Gas chromatography/mass spectrometry was used to analyze the BVOC components and standardized BVOC emission rates of each tree species were then calculated to assess their relative potential to form secondary pollutants. We found obvious differences in the composition of BVOCs emitted by each species. Ficus virens displayed a high isoprene emission rate at 31.472 μgC/(gdw (g dry weight)•hr), while Cinnamomum camphora emitted high volumes of D-Limonene at 93.574 μgC/(gdw•hr). In terms of the BVOC emission rates by leaf area, C. camphora had the highest emission rate of total BVOCs at 13,782.59 μgC/(m2•hr), followed by Cedrus deodara with 5466.86 μgC/(m2•hr). Ginkgo biloba and Osmanthus fragrans mainly emitted oxygenated VOCs with lower overall emission rates. The high BVOC emitters like F. virens, C. camphora, and Magnolia grandiflora have high potential for significantly contributing to environmental secondary pollutants, so should be cautiously considered for future planting. This study provides important implications for improving urban greening efforts for subtropical Chinese urban contexts, like Chengdu.  相似文献   
247.
城市面源污染负荷动态更新体系构建研究   总被引:1,自引:0,他引:1  
为及时掌握城市面源污染状况,构建了城市面源污染负荷动态更新体系。以北京市建成区典型下垫面为研究对象,采用事件平均浓度统计法,估算了基准年污染负荷,并通过变量更新系数,更新了2012年北京市城市面源污染物SS、COD、TN、TP、氨氮负荷。结果表明:街道路面和屋面污染负荷最大,城市绿地面积显著增加对削减城市面源污染负荷具有重要作用。  相似文献   
248.
The Bhopal disaster was a gas leak incident in India, considered the world's worst industrial disaster happened around process facilities. Nowadays the process facilities in petrochemical industries have becoming increasingly large and automatic. There are many risk factors with complex relationships among them. Unfortunately, some operators have poor access to abnormal situation management experience due to the lack of knowledge. However these interdependencies are seldom accounted for in current risk and safety analyses, which also belonged to the main factor causing Bhopal tragedy. Fault propagation behavior of process system is studied in this paper, and a dynamic Bayesian network based framework for root cause reasoning is proposed to deal with abnormal situation. It will help operators to fully understand the relationships among all the risk factors, identify the causes that lead to the abnormal situations, and consider all available safety measures to cope with the situation. Examples from a case study for process facilities are included to illustrate the effectiveness of the proposed approach. It also provides a method to help us do things better in the future and to make sure that another such terrible accident never happens again.  相似文献   
249.
The performance of energy infrastructures under extreme loading conditions, especially for blast and impact conditions, is of great importance despite the low probability for such events to occur. Due to catastrophic consequences of structural failure, it is crucial to improve the resistance of energy infrastructures against the impact of blasts. A TNT equivalent method is used to simulate a petroleum gas vapor cloud explosion when analyzing the dynamic responses of a spherical tank under external blast loads. The pressure distribution on the surface of a 1000 m3 spherical storage tank is investigated. The dynamic responses of the tank, such as the distribution of effective stress, structural displacement, failure mode and energy distribution under the blast loads are studied and the simulation results reveal that the reflected pressure on the spherical tank decreases gradually from the equator to the poles of the sphere. However, the effects of the shock wave reflection are not so evident on the pillars. The structural damage of the tank subjected to blast loads included partial pillar failure from bending deformation and significant stress concentration, which can be observed in the joint between the pillar and the bottom of the spherical shell. The main reason for the remarkable deformation and structural damage is because of the initial internal energy that the tank obtained from the blast shock wave. The liquid in the tank absorbs the energy of impact loads and reduces the response at the initial stage of damage after the impact of the blast.  相似文献   
250.
Deepwater drilling is one of the high-risk operations in the oil and gas sector due to large uncertainties and extreme operating conditions. In the last few decades Managed Pressure Drilling Operations (MPD) and Underbalanced Drilling (UBD) have become increasingly used as alternatives to conventional drilling operations such as Overbalanced Drilling (OVD) technology. These newer techniques provide several advantages however the blowout risk during these operations is still not fully understood. Blowout is regarded as one of the most catastrophic events in offshore drilling operations; therefore implementation and maintenance of safety measures is essential to maintain risk below the acceptance criteria. This study is aimed at applying the Bayesian Network (BN) to conduct a dynamic safety analysis of deepwater MPD and UBD operations. It investigates different risk factors associated with MPD and UBD technologies, which could lead to a blowout accident. Blowout accident scenarios are investigated and the BNs are developed for MPD and UBD technologies in order to predict the probability of blowout occurrence. The main objective of this paper is to understand MPD and UBD technologies, to identify hazardous events during MPD and UBD operations, to perform failure analysis (modelling) of blowout events and to evaluate plus compare risk. Importance factor analysis in drilling operations is performed to assess contribution of each root cause to the potential accident; the results show that UBD has a higher occurrence probability of kick and blowout compared to MPD technology. The Rotating Control Devices (RCD) failure in MPD technology and increase in flow-through annulus in UBD technology are the most critical situations for kick and blowout.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号