首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  国内免费   20篇
安全科学   1篇
废物处理   1篇
环保管理   5篇
综合类   31篇
基础理论   7篇
污染及防治   9篇
评价与监测   12篇
社会与环境   5篇
  2023年   2篇
  2022年   7篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   3篇
  1997年   2篇
  1995年   1篇
  1988年   1篇
排序方式: 共有71条查询结果,搜索用时 46 毫秒
31.
Haze in China is primarily caused by high pollution of atmospheric fine particulates (PM2.5). However, the detailed source structures of PM2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor (PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit (R2 = 0.953). The results show that the contribution rates of ammonium sulphate, ammonium nitrate, biomass burning organic aerosol (BBOA), secondary organic aerosol (SOA) and black carbon (BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols (79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected.  相似文献   
32.
The impact of the Central American fires on PM2.5 mass concentration and composition in the Tennessee Valley region during portions of May, 1998, has been quantified. Elevated concentrations of smoke aerosol tracers—fine potassium, (and to a lesser extent, calcium and silicon) and, where available, organic and elemental carbon—were observed in the region during times in which satellite imagery (TOMS and GOES-8) showed regional transport of hazy, smoky airmasses from southern Mexico and adjacent areas of Central America. Back-trajectories from network sites in the Tennessee Valley network were consistent with this regional transport. The extent of transport of extra-regional fine particle mass during May, 1998, is discussed relative to the new US fine particle mass-based standards for fine particulate matter.  相似文献   
33.
This study was performed to investigate the concentration of PM10 and PM2.5 inside trains and platforms on subway lines 1, 2, 4 and 5 in Seoul, KOREA. PM10, PM2.5, carbon dioxide (CO2) and carbon monoxide (CO) were monitored using real-time monitoring instruments in the afternoons (between 13:00 and 16:00). The concentrations of PM10 and PM2.5 inside trains were significantly higher than those measured on platforms and in ambient air reported by the Korea Ministry of Environment (Korea MOE). This study found that PM10 levels inside subway lines 1, 2 and 4 exceeded the Korea indoor air quality (Korea IAQ) standard of 150 μg/m3. The average percentage that exceeded the PM10 standard was 83.3% on line 1, 37.9% on line 2 and 63.1% on line 4, respectively. PM2.5 concentration ranged from 77.7 μg/m3 to 158.2 μg/m3, which were found to be much higher than the ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 h arithmetic mean: 65 μg/m3). The reason for interior PM10 and PM2.5 being higher than those on platforms is due to subway trains in Korea not having mechanical ventilation systems to supply fresh air inside the train. This assumption was supported by the CO2 concentration results monitored in tube of subway that ranged from 1153 ppm to 3377 ppm. The percentage of PM2.5 in PM10 was 86.2% on platforms, 81.7% inside trains, 80.2% underground and 90.2% at ground track. These results indicated that fine particles (PM2.5) accounted for most of PM10 and polluted subway air. GLM statistical analysis indicated that two factors related to monitoring locations (underground and ground or inside trains and on platforms) significantly influence PM10 (p < 0.001, R2 = 0.230) and PM2.5 concentrations (p < 0.001, R2 = 0.172). Correlation analysis indicated that PM10, PM2.5, CO2 and CO were significantly correlated at p < 0.01 although correlation coefficients were different. The highest coefficient was 0.884 for the relationship between PM10 and PM2.5.  相似文献   
34.
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network. However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow.  相似文献   
35.
This study encompassed the regular observation of nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in particulate matter (PM) in Shanghai in summer and winter from 2010 to 2018. The results showed that the mean concentrations of ?PAHs in summer decreased by 24.7% in 2013 and 18.1% in 2017 but increased by 10.2% in 2015 compared to the data in 2010. However, the mean concentrations of ?PAHs in winter decreased by 39.7% from 2010 (12.8 ± 4.55 ng/m3) to 2018 (7.72 ± 3.33 ng/m3), and the mean concentrations of 1-nitropyrene in winter decreased by 79.0% from 2010 (42.3 ± 16.1 pg/m3) to 2018 (8.90 ± 2.09 pg/m3). Correlation analysis with meteorological conditions revealed that the PAH and NPAH concentrations were both influenced by ambient temperature. The diagnostic ratios of PAHs and factor analysis showed that they were mainly affected by traffic emissions with some coal and/or biomass combustion. The ratio of 2-nitrofluoranthene to 2-nitropyrene was near 10, which indicated that the OH radical-initiated reaction was the main pathway leading to their secondary formation. Moreover, backward trajectories revealed different air mass routes in each sampling period, indicating a high possibility of source effects from the northern area in winter in addition to local and surrounding influences. Meanwhile, the mean total benzo[a]pyrene-equivalent concentrations in Shanghai in winter decreased by 50.8% from 2010 (1860 ± 645 pg/m3) to 2018 (916 ± 363 pg/m3). These results indicated the positive effects of the various policies and regulations issued by Chinese authorities.  相似文献   
36.
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   
37.
为研究大气中细颗粒物(PM2.5)在中低浓度水平下的污染特征及来源,于2018-2020年在上海市浦东新区采用在线气体组分及气溶胶监测系统对大气ρ(PM2.5)及其水溶性离子的质量浓度进行了在线连续观测.结果表明,2018-2020年ρ(PM2 5)变化总体均呈现冬季较高,春、秋季其次,夏季较低的特征.PM2.5中水溶...  相似文献   
38.
论述了在国家排污费征收新条例实施后,淮安市在加强排污费征收的精细化管理方面所做的有益探索性方面的工作。  相似文献   
39.
我国大气颗粒物来源及特征分析   总被引:23,自引:0,他引:23  
我国大气颗粒物来源复杂,呈现大气复合型污染特征,对主要污染源进行识别和定量,是制定城市空气质量改善措施的基础。本研究总结了2000年以来我国近30个城市大气可吸入颗粒物PM10源解析研究,结果表明我国大气颗粒物PM10主要来自六类源:扬尘(土壤尘、道路尘、建筑尘);燃煤;工业排放;机动车排放;生物质燃烧;SO2、NOx、VOCs氧化产生的二次颗粒物。研究还表明,不同地区不同季节大气颗粒物主要来源和相对贡献存在差异。近年来随着大气颗粒物控制措施的实施,城市PM10污染状况已明显改善,大气细颗粒物PM2.5越来越受关注,在制定空气质量达标方案时,各类燃烧源和二次颗粒物的重要性将进一步上升。  相似文献   
40.
A field lysimeter/mini plot experiment was established in a silt loam soil near Lincoln, New Zealand, to investigate the effectiveness of urea fertilizer in fine particle application (FPA), with or without the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT - “Agrotain”), in decreasing nitrogen (N) losses and improving N uptake efficiency. The five treatments were: control (no N) and 15N-labelled urea, with or without NBPT, applied to lysimeters or mini plots (unlabelled urea), either in granular form to the soil surface or in FPA form (through a spray) at a rate equivalent to 100 kg N ha−1. Gaseous emissions of ammonia (NH3) and nitrous oxide (N2O), nitrate (NO3) leaching, herbage dry-matter (DM) production, N-response efficiency, total N uptake and total recovery of applied 15N in the plant and soil varied with urea application method and with addition of NBPT. Urea with NBPT, applied in granular or FPA form, was more effective than in application without NBPT: N2O emissions were reduced by 7-12%, NH3 emissions by 65-69% and NO3 leaching losses by 36-55% compared with granular urea. Urea alone and with NBPT, applied in FPA form increased herbage DM production by 27% and 38%, respectively. The N response efficiency increased from 10 kg DM kg−1 of applied N with granular urea to 19 kg DM kg−1 with FPA urea and to 23 kg DM kg−1 with FPA urea plus NBPT. Urea applied in FPA form resulted in significantly (P < 0.05) higher 15N recovery in the shoots compared with granular treatments and this was improved further when urea in FPA form was applied with NBPT. These results suggest that applying urea with NBPT in FPA form has potential as a management tool in mitigating N losses, improving N-response efficiency and increasing herbage DM production in intensive grassland systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号