首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  国内免费   9篇
环保管理   30篇
综合类   10篇
基础理论   24篇
污染及防治   34篇
评价与监测   5篇
社会与环境   16篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   5篇
  2012年   8篇
  2011年   16篇
  2010年   2篇
  2009年   16篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有119条查询结果,搜索用时 78 毫秒
61.
This study investigates the relevance of several soil chemical extractions (calcium chloride, acetic acid, citric acid and a four-step sequential procedure) and predicted free metal ion activities in the soil solution to characterise the transfer of trace metals (Cd, Pb, and Zn) from soil to snail soft tissues over a large smelter-impacted area (Metaleurop Nord, Nord-Pas-de-Calais, France). The study was first performed on six snail species together and then specifically on Cepaea sp. and Oxychilus draparnaudi. When the six species were considered together, the accumulation of metals depended mostly on the species. When significant, total or extractable metal concentrations, or the predicted free ion activities, accounted for less than 7% of the variation of the metal concentrations in the snail tissues. Species-specific analyses showed that extractable concentrations explained approximately 25% of the variation of the metal concentrations in O. draparnaudi, and up to 8% in Cepaea snails. When using total soil concentrations and soil properties as explanatory variables, the models were generally slightly better, explaining up to 42% of the variance. The soil extraction procedures and predicted free ion activities used in this study did not accurately estimate the metal transfer from soil to snails and could not be used in risk assessment.  相似文献   
62.
The contents of heavy metals (HMs) were studied in freshwater hydrobionts from the south of the Russian Far East, including the area of wastewater discharge from a lead smelter (the village of Rudnaya Pristan, Primorye). The results showed that most invertebrates disappeared from the ecosystem as the toxicity of the aquatic environment increased. Mollusks of the genus Lymnaea proved to be most tolerant of HM pollution. As the contents of Pb, Mn, Cd, and Zn in bottom sediments increased, the amounts of these metals in mollusk bodies increased as well but to a much lesser extent, with the intensity of HM accumulation decreasing at their higher concentrations in the environment. The range of HM concentrations accumulated in the bodies of limneids noticeably broadened with an increase in technogenic impact. This is evidence for differences in the efficiency of mechanisms regulating the contents of trace elements in individuals of the same species under conditions of extreme pollution.  相似文献   
63.
Polybrominated diphenyl ethers (PBDEs) were determined in muscle, liver and eggs of freshwater fishes and surface sediments from the Nongkang River in Jinhu, Jiangsu Province, China. The present study is the first to report PBDE concentrations in the freshwater environment surrounding a PBDE manufacturing plant in China. The concentrations of 13 PBDE congeners in muscle, liver and eggs of freshwater fishes ranged from <LOD to 130, <LOD to 252 and <LOD to 33.3 ng/g lipid wt, respectively, while the concentrations of 13 PBDE congeners in surface sediments from sewage outfall, upstream and downstream of the river were 52, 9.2, 7.1 ng/g organic carbon wt, respectively. Contamination by PBDEs in this area was not serious when compared with other regions of the world. A relatively high proportion of BDE-183 was found, consistent with the octa-BDE technical mixtures from the manufacturing plant by the side of the river.  相似文献   
64.
Droughts often pose situations where stream water levels are lowest while human demand for water is highest. Here we present results of an observational study documenting changes in freshwater mussel communities in two southern US rivers during a multi-year drought. During a 13-year period water releases into the Kiamichi River from an impoundment were halted during droughts, while minimum releases from an impoundment were maintained in the Little River. The Kiamichi observed nearly twice as many low-flow events known to cause mussel mortality than the Little, and regression tree analyses suggest that this difference was influenced by reduced releases. During this period mussel communities in the Kiamichi declined in species richness and abundance, changes that were not observed in the Little. These results suggest that reduced releases during droughts likely led to mussel declines in one river, while maintaining reservoir releases may have sustained mussel populations in another.  相似文献   
65.
It has been well-documented that the distribution of ammonia-oxidizing bacteria(AOB) and archaea(AOA) in soils can be affected by heavy metal contamination, whereas information about the impact of heavy metal on these ammonia-oxidizing microorganisms in freshwater sediment is still lacking. The present study explored the change of sediment ammonia-oxidizing microorganisms in a freshwater reservoir after being accidentally contaminated by industrial discharge containing high levels of metals. Bacterial amoA gene was found to be below the quantitative PCR detection and was not successfully amplified by conventional PCR. The number of archaeal amoA gene in reservoir sediments were 9.62 × 10~2–1.35 × 10~7 copies per gram dry sediment. AOA abundance continuously decreased, and AOA richness, diversity and community structure also considerably varied with time. Therefore, heavy metal pollution could have a profound impact on freshwater sediment AOA community. This work could expand our knowledge of the effect of heavy metal contamination on nitrification in natural ecosystems.  相似文献   
66.
For assessing the impact of chlorinated compounds, such as organochlorine pesticides, polychlorinated biphenyls, chlorotriazines (atrazine, simazine), and chlorinated phenylureas (diuron), on the Ponta Grossa lake South of Brazil, ten freshwater trahira fish (Hoplias malabaricus) were collected in October 2005. The contamination status was evaluated by the energy budget and various histopathological markers. The results showed detectable amounts of persistent organic pollutants (POPs) in the liver and muscle; the bioaccumulation was higher in the liver than in the muscle. The presence of some banned pesticides, such as hexachlorobenzene and dichlorodiphenyltrichloroethane, in the liver suggests an acute exposure to these compounds. Some physiological disturbances and morphological damages found in the liver of H. malabaricus were associated with chlorinated-compound bioaccumulation. The most important alterations in the liver were lesions such as fibrosis, large necrosis area, leukocyte infiltration, and the absence of melanomacrophages (MM). Individuals containing higher concentrations of pesticides, such as aldrin, alachlor, and dichloroaniline (a metabolite of diuron), showed the nonoccurrence of MM in the liver. These data suggest an immunosuppression in the individuals from Ponta Grossa Lake after exposure to POPs. According to the present data, the POPs found in the studied site are bioavailable, induce severe damages in target organs such as the liver, and can disturb the immune system of the trahira. This is the first study of POPs in the Paraná state, and one among the few studies in the south of Brazil. The present data suggest and motivate further chemical and biomonitoring studies in freshwater ecosystems in the south of Brazil.  相似文献   
67.
The U.S. Environmental Protection Agency uses environmental models to inform rulemaking and policy decisions at multiple spatial and temporal scales. As decision-making has moved towards integrated thinking and assessment (e.g. media, site, region, services), the increasing complexity and interdisciplinary nature of modern environmental problems has necessitated a new generation of integrated modeling technologies. Environmental modelers are now faced with the challenge of determining how data from manifold sources, types of process-based and empirical models, and hardware/software computing infrastructure can be reliably integrated and applied to protect human health and the environment.In this study, we demonstrate an Integrated Modeling Framework that allows us to predict the state of freshwater ecosystem services within and across the Albemarle-Pamlico Watershed, North Carolina and Virginia (USA). The Framework consists of three facilitating technologies: Data for Environmental Modeling automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation is a hardware and software parallel-computing interface with pre/post-processing analysis tools, including parameter estimation, uncertainty and sensitivity analysis. In this application, five environmental models are linked within the Framework to provide multimedia simulation capabilities: the Soil Water Assessment Tool predicts watershed runoff; the Watershed Mercury Model simulates mercury runoff and loading to streams; the Water quality Analysis and Simulation Program predicts water quality within the stream channel; the Habitat Suitability Index model predicts physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator predicts fish growth and production, as well as exposure and bioaccumulation of toxic substances (e.g., mercury).Using this Framework, we present a baseline assessment of two freshwater ecosystem services-water quality and fisheries resources-in headwater streams throughout the Albemarle-Pamlico. A stratified random sample of 50 headwater streams is used to draw inferences about the target population of headwater streams across the region. Input data is developed for a twenty-year baseline simulation in each sampled stream using current land use and climate conditions. Monte Carlo sampling (n = 100 iterations per stream) is also used to demonstrate some of the Framework's experimental design and data analysis features. To evaluate model performance and accuracy, we compare initial (i.e., uncalibrated) model predictions (water temperature, dissolved oxygen, fish density, and methylmercury concentration within fish tissue) against empirical field data. Finally, we ‘roll-up’ the results from individual streams, to assess freshwater ecosystem services at the regional scale.  相似文献   
68.
Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta.  相似文献   
69.
Acid rain and acidification research are indeed a multidisciplinary field. This field evolved from the first attempts to mitigate acid freshwater in the 1920s, then linking acid rain to the acidification in late 1950s, to the broad project-concepts on cause and effect from the late 1960s. Three papers from 1974, 1976 and 1988 demonstrate a broad approach and comprise scientific areas from analytical chemistry, biochemistry, limnology, ecology, physiology and genetics. Few, if any, environmental problems have led to a public awareness, political decisions and binding limitations as the story of acid rain. Acid precipitation and acidification problems still exist, but at a lower pressure, and liming has been reduced accordingly. However, the biological responses in the process of recovery are slow and delayed. The need for basic science, multidisciplinary studies, long time series of high-quality data, is a legacy from the acid rain era, and must form the platform for all future environmental projects.  相似文献   
70.
Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth’s arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world’s preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth’s total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity’s highest priorities.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01318-8) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号